Given the equation
"y=x^{4sinx}" The derivative of the function is obtained thus:
"\\begin{aligned}\n&\\begin{gathered}\n\\quad \\frac{\\mathrm{d}}{\\mathrm{d} x}\\left[x^{4 \\sin (x)}\\right] \\\\\n=x^{4 \\sin (x)} \\cdot \\frac{\\mathrm{d}}{\\mathrm{d} x}[\\ln (x) \\cdot 4 \\sin (x)] \\\\\n=x^{4 \\sin (x)} \\cdot 4 \\cdot \\frac{\\mathrm{d}}{\\mathrm{d} x}[\\ln (x) \\sin (x)] \\\\\n=4 x^{4 \\sin (x)}\\left(\\frac{\\mathrm{d}}{\\mathrm{d} x}[\\ln (x)] \\cdot \\sin (x)+\\ln (x) \\cdot \\frac{\\mathrm{d}}{\\mathrm{d} x}[\\sin (x)]\\right) \\\\\n=4 x^{4 \\sin (x)}\\left(\\frac{1}{x} \\sin (x)+\\ln (x) \\cos (x)\\right) \\\\\n=4 x^{4 \\sin (x)}\\left(\\frac{\\sin (x)}{x}+\\cos (x) \\ln (x)\\right)\n\\end{gathered}\\\\\n&\\text { We can rewrite the above result as: }\\\\\n&=x^{4 \\sin (x)}\\left(\\frac{4 \\sin (x)}{x}+4 \\cos (x) \\ln (x)\\right)\n\\end{aligned}"
Comments
Leave a comment