Evaluate the following limits
(a) Lim y"\\to" -1 Fourth root of 4y^3 minus 3
(b) lim x"\\to" infinity 1+x all over 1-x
(c) lim x "\\to" 2 x - 2 all over 4 - x^2
(d) lim x "\\to" 0 sinx - x cos x all over x^3
(a)
does not exist.
(b)
"=\\lim\\limits_{x\\to \\infin}\\dfrac{\\dfrac{1}{x}+1}{\\dfrac{1}{x}-1}=\\dfrac{0+1}{0-1}=-1"
(c)
"=-\\dfrac{1}{2+2}=-\\dfrac{1}{4}"
(d)
"\\lim\\limits_{x\\to 0}(x^3)=0"
"\\big[\\dfrac{0}{0}\\big]"
L'Hospital's Rule
"\\lim\\limits_{x\\to 0}\\dfrac{\\sin x-x\\cos x}{x^3}=\\lim\\limits_{x\\to 0}\\dfrac{(\\sin x-x\\cos x)'}{(x^3)'}""=\\lim\\limits_{x\\to 0}\\dfrac{\\cos x-\\cos x+x\\sin x}{3x^2}=\\lim\\limits_{x\\to 0}\\dfrac{\\sin x}{3x}"
"=\\lim\\limits_{x\\to 0}\\dfrac{(\\sin x)'}{(3x)'}=\\lim\\limits_{x\\to 0}\\dfrac{\\cos x}{3}=\\dfrac{1}{3}"
Comments
Leave a comment