Question #213706

Evaluate the following limits

(a) Lim y\to -1 Fourth root of 4y^3 minus 3

(b) lim x\to infinity 1+x all over 1-x

(c) lim x \to 2 x - 2 all over 4 - x^2

(d) lim x \to 0 sinx - x cos x all over x^3


1
Expert's answer
2021-07-26T17:31:37-0400

(a) limy14y334=?\lim\limits_{y\to-1}\sqrt[4]{4y^3-3}=?

If y<0y<0 then 4y33<04y^3-3<0 and the fourth root doesn't exist in real numbers.

So we will consider another limit:

limy14y334=limy11+4(y31)4=limy114=1\lim\limits_{y\to 1}\sqrt[4]{4y^3-3}=\lim\limits_{y\to 1}\sqrt[4]{1+4(y^3-1)}=\lim\limits_{y\to 1}\sqrt[4]{1}=1


(b) limx1+x1x=limxx1+1x11=limx11=1\lim\limits_{x\to\infty}\frac{1+x}{1-x}=\lim\limits_{x\to\infty}\frac{x^{-1}+1}{x^{-1}-1}=\lim\limits_{x\to\infty}\frac{1}{-1}=-1


(c) limx2x24x2=limx2x2(2+x)(2x)=limx21x+2=14\lim\limits_{x\to 2}\frac{x-2}{4-x^2}=\lim\limits_{x\to 2}\frac{x-2}{(2+x)(2-x)}=\lim\limits_{x\to 2}\frac{-1}{x+2}=-\frac{1}{4}


(d) limx0sinxxcosxx3=limx0xx3/6+o(x3)x(1x2/2+o(x2))x3=\lim\limits_{x\to 0}\frac{\sin x-x\cos x}{x^3}=\lim\limits_{x\to 0}\frac{x-x^3/6+o(x^3)-x(1-x^2/2+o(x^2))}{x^3}=

=limx0x3/6+x3/2+o(x3)x3=limx0(16+12+o(1))=13=\lim\limits_{x\to 0}\frac{-x^3/6+x^3/2+o(x^3)}{x^3}=\lim\limits_{x\to 0}(-\frac{1}{6}+\frac{1}{2}+o(1))=\frac{1}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS