(a) y→−1lim44y3−3=?
If y<0 then 4y3−3<0 and the fourth root doesn't exist in real numbers.
So we will consider another limit:
y→1lim44y3−3=y→1lim41+4(y3−1)=y→1lim41=1
(b) x→∞lim1−x1+x=x→∞limx−1−1x−1+1=x→∞lim−11=−1
(c) x→2lim4−x2x−2=x→2lim(2+x)(2−x)x−2=x→2limx+2−1=−41
(d) x→0limx3sinx−xcosx=x→0limx3x−x3/6+o(x3)−x(1−x2/2+o(x2))=
=x→0limx3−x3/6+x3/2+o(x3)=x→0lim(−61+21+o(1))=31
Comments