Evaluate the following limits
(a) Lim y"\\to" -1 Fourth root of 4y^3 minus 3
(b) lim x"\\to" infinity 1+x all over 1-x
(c) lim x "\\to" 2 x - 2 all over 4 - x^2
(d) lim x "\\to" 0 sinx - x cos x all over x^3
(a) "\\lim\\limits_{y\\to-1}\\sqrt[4]{4y^3-3}=?"
If "y<0" then "4y^3-3<0" and the fourth root doesn't exist in real numbers.
So we will consider another limit:
"\\lim\\limits_{y\\to 1}\\sqrt[4]{4y^3-3}=\\lim\\limits_{y\\to 1}\\sqrt[4]{1+4(y^3-1)}=\\lim\\limits_{y\\to 1}\\sqrt[4]{1}=1"
(b) "\\lim\\limits_{x\\to\\infty}\\frac{1+x}{1-x}=\\lim\\limits_{x\\to\\infty}\\frac{x^{-1}+1}{x^{-1}-1}=\\lim\\limits_{x\\to\\infty}\\frac{1}{-1}=-1"
(c) "\\lim\\limits_{x\\to 2}\\frac{x-2}{4-x^2}=\\lim\\limits_{x\\to 2}\\frac{x-2}{(2+x)(2-x)}=\\lim\\limits_{x\\to 2}\\frac{-1}{x+2}=-\\frac{1}{4}"
(d) "\\lim\\limits_{x\\to 0}\\frac{\\sin x-x\\cos x}{x^3}=\\lim\\limits_{x\\to 0}\\frac{x-x^3\/6+o(x^3)-x(1-x^2\/2+o(x^2))}{x^3}="
"=\\lim\\limits_{x\\to 0}\\frac{-x^3\/6+x^3\/2+o(x^3)}{x^3}=\\lim\\limits_{x\\to 0}(-\\frac{1}{6}+\\frac{1}{2}+o(1))=\\frac{1}{3}"
Comments
Leave a comment