y=5−3x22x−8
let u=2x−8⟹dxdu=2
let v=5−3x2⟹dxdv=−6x
In this case, we use the quotient rule of differentiation as follows
dxdy=v2(dxdu×v)−(u×dxdv)
=(5−3x2)22(5−3x2)−(2x−8)×(−6x)
=(5−3x2)22(5−3x2)+6x(2x−8)
=(5−3x2)210−6x2+12x2−48x
=(5−3x2)210+6x2−48x
Comments