Question #214206

Verify rolle's theorem

f(x)=(x-a)^m(x-b)^n,where m,n are positive intigers, in the interval [a,b]


1
Expert's answer
2021-07-12T09:28:59-0400

Rolle's theorem state that any real value differentiable function which gives equal value at two distinct points will have a point in between them where f(x)=0f^{'}(x) =0 exist .


Now given function is f(x)=(xa)m(xb)nf(x)=(x-a)^{m}(x-b)^{n} , where m , n are positive integers , in the interval [a,b].


Now putting x=a,x=a, we get f(a)=0f(a)=0


putting x=bx=b , we get f(b)=0f(b)=0 , so hence it proves that rolle's theorem satisfy .


Now , we have to check f(x)f^{'}(x) is 0 between the point a and b respectively .


Now , in this case we will two functions the first one will be (xa)m(x-a)^{m} and the second one will be (xb)n.(x-b)^{n}.


f(x)=d[(xa)m(xb)n]dx=(xb)nm(xa)m1+(xa)mn(xb)n1f^{'}(x)=\dfrac{d[(x-a)^{m}(x-b)^{n}]}{dx}=(x-b)^{n}m(x-a)^{m-1}+(x-a)^{m}n(x-b)^{n-1}



now putting f(x)=0f^{'}(x)=0 , we get ,


=m(xa)m1(xb)n+(xa)mn(xb)n1=0=m(x-a)^{m-1}(x-b)^{n}+(x-a)^{m}n(x-b)^{n-1}=0


=(xa)m1(xb)n1[m(xb)+n(xa)]=0=(x-a)^{m-1}(x-b)^{n-1}[m(x-b)+n(x-a)]=0


(m+n)x=mb+na(m+n)x=mb+na


x=(mb+na)m+nx=\dfrac{(mb+na)}{m+n}


=(mb+na)m+n>a=\dfrac{(mb+na)}{m+n}>a , m and n are given that are positive numbers .


=mb+na>ma+na    =mb+na>ma+na\implies m(ba)>0m(b-a)>0


Similarly ,


=(mb+na)m+n<b=\dfrac{(mb+na)}{m+n}<b


=mb+na<mb+nb    n(ab)<0=mb+na<mb+nb\implies n(a-b)<0


So it implies that


a<(mb+na)m+n<ba<\dfrac{(mb+na)}{m+n}<b


So , hence our rolle's theorem verifies.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS