d²y/dx²-6dy/dx+9y=x²e^(3x)
Given differential equation is "\\frac{d^2y}{dx^2}-6\\frac{dy}{dx}+9y=x^2e^{3x}"
Auxiliary equation is, "m^2-6m+9 = 0 \\implies m =3,3"
C.F. "y = (c_1+c_2x)e^{3x}"
P.I. "\\frac{1}{D^2-6D+9}x^2e^{3x} = e^{3x}\\frac{1}{(D+3)^2-6(D+3)+9}x^2"
"=e^{3x}\\frac{1}{D^2}x^2 = e^{3x}\\int \\int x^2dx dx = \\frac{x^4}{12}e^{3x}"
Hence complete solution of the equation is,
"y = (c_1+c_2x)e^{3x}+\\frac{x^4}{12}e^{3x}"
Comments
Leave a comment