Question #214245

d²y/dx²-6dy/dx+9y=x²e^(3x)


1
Expert's answer
2021-07-07T09:11:32-0400

Given differential equation is d2ydx26dydx+9y=x2e3x\frac{d^2y}{dx^2}-6\frac{dy}{dx}+9y=x^2e^{3x}


Auxiliary equation is, m26m+9=0    m=3,3m^2-6m+9 = 0 \implies m =3,3

C.F. y=(c1+c2x)e3xy = (c_1+c_2x)e^{3x}


P.I. 1D26D+9x2e3x=e3x1(D+3)26(D+3)+9x2\frac{1}{D^2-6D+9}x^2e^{3x} = e^{3x}\frac{1}{(D+3)^2-6(D+3)+9}x^2


=e3x1D2x2=e3xx2dxdx=x412e3x=e^{3x}\frac{1}{D^2}x^2 = e^{3x}\int \int x^2dx dx = \frac{x^4}{12}e^{3x}


Hence complete solution of the equation is,

y=(c1+c2x)e3x+x412e3xy = (c_1+c_2x)e^{3x}+\frac{x^4}{12}e^{3x}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS