Question #214757

A closed rectangular box with a volume of 16 ft cube is to be made of three different materials. The cost of the material for the top and the bottom is $9 per sq. ft, the cost of the material for the front and the back is $8 per sq. ft. and the cost of the material for other two sides is $6 per sq. ft. Find the dimensions of the box (by two ways if possible) so that the cost of materials is minimized.


1
Expert's answer
2021-07-29T16:58:39-0400

Let x = length, y = width and z = height. From the question wee have thatxyz=16(1)The total cost is given by 9(2xy)+8(2yz)+6(2xz)=c(2)From eqn(1), we have that z=16xyWe put the value of z in equation 2, therefore, we have18xy+256x1+192y1=cWe differentiate c seperately with respect to x and y to obtain the following equations 18y256x2=0(3)18x192y2=0(4)Using elimination method we have thatx=256192ySubstituting the value of x in equation 3, we have18(256192)y192y2=0Calculating y, we have y = 2,since x = 256192y and z =16xytherefore x = 2.67, y = 2, z=3\text{Let x = length, y = width and z = height. From the question wee have that}\\xyz=16-(1) \\\text{The total cost is given by }\\9(2xy)+8(2yz)+6(2xz)=c-(2)\\\text{From eqn(1), we have that $z=\frac{16}{xy}$}\\\text{We put the value of z in equation 2, therefore, we have}\\18xy+256x^{-1}+192y^{-1}=c\\\text{We differentiate c seperately with respect to x and y to obtain the following equations }\\18y-256x^{-2}=0-(3)\\18x-192y^{-2}=0-(4)\\\text{Using elimination method we have that}\\x=\frac{256}{192}y\\\text{Substituting the value of x in equation 3, we have}\\18(\frac{256}{192})y-192y^{-2}=0\\\text{Calculating y, we have y = 2,since x = $\frac{256}{192}y$ and z =$ \frac{16}{xy}$}\\\text{therefore x = 2.67, y = 2, z=3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS