Let P(x,y)=cosy+ycosx and Q(x,y)=sinx−xsiny. Then
∂y∂P=−siny+cosx
∂x∂Q=cosx−siny
∂y∂P=cosx−siny=∂x∂Q Then F(x,y) is conservative.
∃f,∇f=F
∂x∂f=P(x,y)=cosy+ycosx
∂y∂f=Q(x,y)=sinx−xsiny
f=∫(cosy+ycosx)dx+φ(y)
=xcosy+ysinx+φ(y)
∂y∂f=−xsiny+sinx+φ′(y)=sinx−xsiny
=>φ′(y)=0=>φ(y)=C
f(x,y)=xcosy+ysinx+C Therefore the line integral is independent of path.
Comments