Question #215489

Evaluate the integral, I  (4x  2y) dxdy 3 in the region R bounded by x  0, x  2, y  x and y  x  2 .


1
Expert's answer
2021-07-11T17:31:59-0400
02xx24x2ydydx=02[2x2y2]x2xdx\displaystyle\int_{0}^{2}\displaystyle\int_{x}^{x^2}4x^2ydydx=\displaystyle\int_{0}^{2}[2x^2y^2]\begin{matrix} x^2 \\ x \end{matrix}dx

=202(x6x4)dx=2[x77x55]20=2\displaystyle\int_{0}^{2}(x^6-x^4)dx=2\big[\dfrac{x^7}{7}-\dfrac{x^5}{5}\big]\begin{matrix} 2 \\ 0 \end{matrix}

=2(277255)=6435(207)=83235=2(\dfrac{2^7}{7}-\dfrac{2^5}{5})=\dfrac{64}{35}(20-7)=\dfrac{832}{35}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS