Question #215845

find the horizontal and vertical tangents to

x

=

cos

(

3

t

)

and

y

=

2

sin

(

t

)

?


1
Expert's answer
2021-07-19T10:54:07-0400
dydx=dydtdxdt=2cos(t)3sin(3t)\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=-\dfrac{2\cos(t)}{3\sin(3t)}

Horizontal tangents occur when the derivative equals 0.


2cos(t)3sin(3t)=0=>t=π2+πn,nZ-\dfrac{2\cos(t)}{3\sin(3t)}=0=>t=\dfrac{\pi}{2}+\pi n, n\in \Z

x=0,y=±2x=0, y=\pm2

Horizontal tangents: y=2,y=2.y=-2, y=2.


Vertical tangents occur when the derivative is undefined.


3sin(3t)=0=>t=πn3,nZ3\sin(3t)=0=>t=\dfrac{\pi n}{3}, n\in \Z

x=±1,y=π3,0,π3x=\pm1, y=-\dfrac{\pi}{3}, 0, \dfrac{\pi }{3}

Vertical tangents: x=1,x=1.x=-1, x=1.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS