Question #216770

A company manufactures and sales x computers per month. The monthly cost and price demand equation are C(x) = 72000 + 60𝑥 Price-demand equation is 𝑝(𝑥) = 200 − 𝑥 30 a. Find the maximum revenue. b. Find the maximum profit and the production level that will realize the maximum profit.  c. The price the company should sell for each computer. 


1
Expert's answer
2021-07-13T16:14:20-0400

a. Revenue is


R(x)=p(x)x=(200x30)x=200xx230,x0R(x)=p(x)x=(200-\dfrac{x}{30})x=200x-\dfrac{x^2}{30}, x\geq0

R(x)=(200xx230)=200x15R'(x)=(200x-\dfrac{x^2}{30})'=200-\dfrac{x}{15}

Critical number(s)


R(x)=0=>200x15=0=>x=3000R'(x)=0=>200-\dfrac{x}{15}=0=>x=3000

If 0<x<3000,R(x)>0,R(x)0<x<3000, R'(x)>0, R(x) increases.

If x>3000,R(x)<0,R(x)x>3000, R'(x)<0, R(x) decreases.

The function R(x)R(x) has a local maximum at x=3000.x=3000.

Since the function R(x)R(x) has the only extremum for x0,x\geq 0, then the function R(x)R(x) has the absolute maximum at x=3000x=3000 for x0.x\geq0.


R(3000)=200(3000)(3000)230=$300000R(3000)=200(3000)-\dfrac{(3000)^2}{30}=\$300000

b.  Profit is


P(x)=R(x)C(x)=200xx230(72000+60x)P(x)=R(x)-C(x)=200x-\dfrac{x^2}{30}-(72000+60x)

=200xx230(72000+60x)=200x-\dfrac{x^2}{30}-(72000+60x)

=120xx23072000=120x-\dfrac{x^2}{30}-72000

P(x)=(120xx23072000)=120x15P'(x)=(120x-\dfrac{x^2}{30}-72000)'=120-\dfrac{x}{15}

Critical number(s)


P(x)=0=>120x15=0=>x=1800P'(x)=0=>120-\dfrac{x}{15}=0=>x=1800

If 0<x<1800,P(x)>0,P(x)0<x<1800, P'(x)>0, P(x) increases.

If x>1800,P(x)<0,P(x)x>1800, P'(x)<0, P(x) decreases.

The function P(x)P(x) has a local maximum at x=1800.x=1800.

Since the function P(x)P(x) has the only extremum for x0,x\geq 0, then the function P(x)P(x) has the absolute maximum at x=1800x=1800 for x0.x\geq0.


P(1800)=120(1800)(1800)230=$108000P(1800)=120(1800)-\dfrac{(1800)^2}{30}=\$108000



c.


p(1800)=200180030=$140p(1800)=200-\dfrac{1800}{30}=\$140




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS