a. Revenue is
R(x)=p(x)x=(200−30x)x=200x−30x2,x≥0
R′(x)=(200x−30x2)′=200−15x Critical number(s)
R′(x)=0=>200−15x=0=>x=3000If 0<x<3000,R′(x)>0,R(x) increases.
If x>3000,R′(x)<0,R(x) decreases.
The function R(x) has a local maximum at x=3000.
Since the function R(x) has the only extremum for x≥0, then the function R(x) has the absolute maximum at x=3000 for x≥0.
R(3000)=200(3000)−30(3000)2=$300000
b. Profit is
P(x)=R(x)−C(x)=200x−30x2−(72000+60x)
=200x−30x2−(72000+60x)
=120x−30x2−72000
P′(x)=(120x−30x2−72000)′=120−15x Critical number(s)
P′(x)=0=>120−15x=0=>x=1800If 0<x<1800,P′(x)>0,P(x) increases.
If x>1800,P′(x)<0,P(x) decreases.
The function P(x) has a local maximum at x=1800.
Since the function P(x) has the only extremum for x≥0, then the function P(x) has the absolute maximum at x=1800 for x≥0.
P(1800)=120(1800)−30(1800)2=$108000
c.
p(1800)=200−301800=$140
Comments