(a)
"f_y=6y-3y^2"
"\\begin{matrix}\n f_x=0\\\\\n f_y=0\n\\end{matrix}"
"\\begin{matrix}\n 2x-6=0\\\\\n 6y-3y^2=0\n\\end{matrix}"
"\\begin{matrix}\n x=3\\\\\n y=0\n\\end{matrix}\\ \\ \\ or\\ \\ \\ \\begin{matrix}\n x=3\\\\\n y=2\n\\end{matrix}"
Critical points: "(3, 0), (3, 2)."
(b)
"f_{xy}=f_{yx}=0"
"f_{yy}=6-6y"
Point "(3, 0)"
"D>0, f_{xx}>0." Point "(3,0)" is a local minimum.
Point "(3, 2)"
"D=\\begin{vmatrix}\n 2 & 0 \\\\\n 0 & 6-6(2)\n\\end{vmatrix}=-12<0""D<0, f_{xx}>0." Point "(3,2)" is a local maximum.
"f(0, 0)=0^2-6(0)+3(0)^2-(0)^3=0>-5"
"f(0, 10)=0^2-6(0)+3(10)^2-(10)^3=-700<-9"
"=-700<-9"
Point "(3,0)" is not a global extremum.
Point "(3,2)" is not a global extremum.
Comments
Leave a comment