(a)
f x = 2 x − 6 f_x=2x-6 f x = 2 x − 6
f y = 6 y − 3 y 2 f_y=6y-3y^2 f y = 6 y − 3 y 2
f x = 0 f y = 0 \begin{matrix}
f_x=0\\
f_y=0
\end{matrix} f x = 0 f y = 0
2 x − 6 = 0 6 y − 3 y 2 = 0 \begin{matrix}
2x-6=0\\
6y-3y^2=0
\end{matrix} 2 x − 6 = 0 6 y − 3 y 2 = 0
x = 3 y = 0 o r x = 3 y = 2 \begin{matrix}
x=3\\
y=0
\end{matrix}\ \ \ or\ \ \ \begin{matrix}
x=3\\
y=2
\end{matrix} x = 3 y = 0 or x = 3 y = 2 Critical points: ( 3 , 0 ) , ( 3 , 2 ) . (3, 0), (3, 2). ( 3 , 0 ) , ( 3 , 2 ) .
(b)
f x x = 2 > 0 f_{xx}=2>0 f xx = 2 > 0
f x y = f y x = 0 f_{xy}=f_{yx}=0 f x y = f y x = 0
f y y = 6 − 6 y f_{yy}=6-6y f yy = 6 − 6 y Point ( 3 , 0 ) (3, 0) ( 3 , 0 )
D = ∣ 2 0 0 6 − 6 ( 0 ) ∣ = 12 > 0 D=\begin{vmatrix}
2 & 0 \\
0 & 6-6(0)
\end{vmatrix}=12>0 D = ∣ ∣ 2 0 0 6 − 6 ( 0 ) ∣ ∣ = 12 > 0
D > 0 , f x x > 0. D>0, f_{xx}>0. D > 0 , f xx > 0. Point ( 3 , 0 ) (3,0) ( 3 , 0 ) is a local minimum.
f ( 3 , 0 ) = 3 2 − 6 ( 3 ) + 3 ( 0 ) 2 − ( 0 ) 3 = − 9 f(3, 0)=3^2-6(3)+3(0)^2-(0)^3=-9 f ( 3 , 0 ) = 3 2 − 6 ( 3 ) + 3 ( 0 ) 2 − ( 0 ) 3 = − 9
Point ( 3 , 2 ) (3, 2) ( 3 , 2 )
D = ∣ 2 0 0 6 − 6 ( 2 ) ∣ = − 12 < 0 D=\begin{vmatrix}
2 & 0 \\
0 & 6-6(2)
\end{vmatrix}=-12<0 D = ∣ ∣ 2 0 0 6 − 6 ( 2 ) ∣ ∣ = − 12 < 0 D < 0 , f x x > 0. D<0, f_{xx}>0. D < 0 , f xx > 0. Point ( 3 , 2 ) (3,2) ( 3 , 2 ) is a local maximum.
f ( 3 , 2 ) = 3 2 − 6 ( 3 ) + 3 ( 2 ) 2 − ( 2 ) 3 = − 5 f(3, 2)=3^2-6(3)+3(2)^2-(2)^3=-5 f ( 3 , 2 ) = 3 2 − 6 ( 3 ) + 3 ( 2 ) 2 − ( 2 ) 3 = − 5
f ( 0 , 0 ) = 0 2 − 6 ( 0 ) + 3 ( 0 ) 2 − ( 0 ) 3 = 0 > − 5 f(0, 0)=0^2-6(0)+3(0)^2-(0)^3=0>-5 f ( 0 , 0 ) = 0 2 − 6 ( 0 ) + 3 ( 0 ) 2 − ( 0 ) 3 = 0 > − 5
f ( 0 , 10 ) = 0 2 − 6 ( 0 ) + 3 ( 10 ) 2 − ( 10 ) 3 = − 700 < − 9 f(0, 10)=0^2-6(0)+3(10)^2-(10)^3=-700<-9 f ( 0 , 10 ) = 0 2 − 6 ( 0 ) + 3 ( 10 ) 2 − ( 10 ) 3 = − 700 < − 9
= − 700 < − 9 =-700<-9 = − 700 < − 9 Point ( 3 , 0 ) (3,0) ( 3 , 0 ) is not a global extremum.
Point ( 3 , 2 ) (3,2) ( 3 , 2 ) is not a global extremum.
Comments