∬x(y−1)dR, where R={y=1−x2,y=x2−3}
First find intersepts points of y=1−x2 and y=x2−3:
1−x2=x2−32x2=4x2=2x=±2
So ∬x(y−1)dR=∫−22dx∫x2−31−x2x(y−1)dy=
=∫−22xdx(2y2−y∣x2−31−x2)==∫−22x(2(1−x2)2−(1−x2)−(2(x2−3)2−(x2−3)))dx==∫−22x(24x2−8−4+2x2)dx==∫−22x(4x2−8)dx=∫−22(4x3−8x)dx=x4−4x2∣−22==4−4∗2−(4−4∗2)=0
Comments