Question #217608
Evaluate integration integration X(y-1) dA where R is the region bounded by y=1-x^2 and y=x^2-3
1
Expert's answer
2021-07-20T08:10:28-0400

x(y1)dR,\iint x(y-1)dR, where R={y=1x2,y=x23}R=\{y=1-x^2, y= x^2-3\}

First find intersepts points of y=1x2y = 1-x^2 and y=x23y = x^2-3:

1x2=x232x2=4x2=2x=±21-x^2 = x^2-3\\ 2x^2 = 4\\ x^2 = 2\\ x = \pm \sqrt2

So x(y1)dR=22dxx231x2x(y1)dy=\iint x(y-1)dR = \int_{-\sqrt2}^{\sqrt 2}dx \int_{x^2-3}^{1-x^2}x(y-1)dy =

=22xdx(y22yx231x2)==22x((1x2)22(1x2)((x23)22(x23)))dx==22x(4x2824+2x2)dx==22x(4x28)dx=22(4x38x)dx=x44x222==442(442)=0= \int_{-\sqrt2}^{\sqrt 2}xdx(\cfrac{y^2}{2}-y|_{x^2-3}^{1-x^2}) = \\ =\int_{-\sqrt2}^{\sqrt 2}x(\cfrac{(1-x^2)^2}{2}-(1-x^2)-(\cfrac{(x^2-3)^2}{2}-(x^2-3)))dx=\\ =\int_{-\sqrt2}^{\sqrt 2}x(\cfrac{4x^2-8}{2}-4+2x^2)dx = \\ = \int_{-\sqrt2}^{\sqrt 2}x(4x^2-8)dx = \int_{-\sqrt2}^{\sqrt 2}(4x^3-8x)dx = x^4 - 4x^2 |_{-\sqrt 2}^{\sqrt 2} =\\ =4 - 4*2 -(4-4*2) = 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS