lim ( x , y ) → ( a , b ) f ( x , y ) = f ( a , b ) \lim\nolimits_{{(x,y)\to(a,b)}} f(x,y)= f(a,b) lim ( x , y ) → ( a , b ) f ( x , y ) = f ( a , b ) is the definition of continuity. Now take the limit from the x-axis
lim ( x , y ) → ( 0 , 0 ) f ( x , 0 ) = lim ( x , y ) → ( 0 , 0 ) 0 ( x 2 + 0 ) = 0 \lim\nolimits_{{(x,y)\to(0,0)}} f(x,0)=\lim\nolimits_{{(x,y)\to(0,0)}} \frac{0}{\sqrt{(x^2+0)}}=0\\ lim ( x , y ) → ( 0 , 0 ) f ( x , 0 ) = lim ( x , y ) → ( 0 , 0 ) ( x 2 + 0 ) 0 = 0
Now take the limit from x=y
lim ( x , y ) → ( 0 , 0 ) f ( x , x ) = lim ( x , y ) → ( 0 , 0 ) x ( x 2 + x 2 ) lim ( x , y ) → ( 0 , 0 ) x ( 2 x 2 ) = 1 2 \lim\nolimits_{{(x,y)\to(0,0)}} f(x,x)=\lim\nolimits_{{(x,y)\to(0,0)}} \frac{x}{\sqrt{(x^2+x^2)}}\\
\lim\nolimits_{{(x,y)\to(0,0)}} \frac{x}{\sqrt{(2x^2)}}= \frac{1}{\sqrt{2}}\\ lim ( x , y ) → ( 0 , 0 ) f ( x , x ) = lim ( x , y ) → ( 0 , 0 ) ( x 2 + x 2 ) x lim ( x , y ) → ( 0 , 0 ) ( 2 x 2 ) x = 2 1
Limit from the x-axis is 0 but the limit from x=y line is 1 2 \frac{1}{\sqrt{2}} 2 1 therefore the limit does not exist which means at (0,0) the funtion f(x,y) is discontinuous since limit f(x,y) does not equal to f(0,0)
Comments