Question #218128

Find the inverse Laplace transforms of the following functions:

(a)

s + 3 /(s^2 + 6s + 13)

(b)

2s + 3/(s^2+6s+13)


1
Expert's answer
2021-07-19T16:58:20-0400

(a)


L1(s+3s2+6s+13)=L1(s(3)(s(3))2+22)L^{-1}(\dfrac{s+3}{s^2+6s+13})=L^{-1}(\dfrac{s-(-3)}{(s-(-3))^2+2^2})

=e3tcos(2t)=e^{-3t}\cos(2t)


(b)


L1(2s+3s2+6s+13)=L1(2(s(3))32(2)(s(3))2+22)L^{-1}(\dfrac{2s+3}{s^2+6s+13})=L^{-1}(\dfrac{2(s-(-3))-\dfrac{3}{2}(2)}{(s-(-3))^2+2^2})

=2L1(s(3)(s(3))2+22)=2L^{-1}(\dfrac{s-(-3)}{(s-(-3))^2+2^2})

32L1(2(s(3))2+22)-\dfrac{3}{2}L^{-1}(\dfrac{2}{(s-(-3))^2+2^2})

=2e3tcos(2t)32e3tsin(2t)=2e^{-3t}\cos(2t)-\dfrac{3}{2}e^{-3t}\sin(2t)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS