Answer to Question #218090 in Calculus for Mohammed Ariful Is

Question #218090

1) Find the following limit:  lim (x→0) ln(1 + (sin(2x))^2 )/ (1 − cos2(x)).


2) Determine type of the differential equation y`` − 2y` + y = sin x:


◦ partial differential equation.

◦ first order differential equation.

◦ linear differential equation with constant coefficients.

◦ linear nonhomogeneous differential equation.

◦ nonlinear homogeneous differential equation.


3) Write general solution of the differential equation x^(2) y'' + xy' + a^(2) y = 0:


◦ Ax^2 + Bx

◦ Ax^a + Bx^−a

◦ Ax^ia + Bx^−ia

◦ Ae^ax + Be^−ax

◦ Ae^iax + Be^−iax

◦ explicit algebraic form does not exist.




1
Expert's answer
2021-07-19T05:48:50-0400

1)


limx0ln(1+sin(2x))21cos2(x)=limx02ln(1+sin(2x))sin2(x)\lim\limits_{x\to 0}\dfrac{\ln(1+\sin(2x))^2}{1-\cos^2(x)}=\lim\limits_{x\to 0}\dfrac{2\ln(1+\sin(2x))}{\sin^2(x)}

limx0(2ln(1+sin(2x))=0\lim\limits_{x\to 0}(2\ln(1+\sin(2x))=0

limx0(sin2(x))=0\lim\limits_{x\to 0}(\sin^2(x))=0

00\dfrac{0}{0}


limx0ln(1+sin(2x))21cos2(x)=limx02ln(1+sin(2x))sin2(x)\lim\limits_{x\to 0}\dfrac{\ln(1+\sin(2x))^2}{1-\cos^2(x)}=\lim\limits_{x\to 0}\dfrac{2\ln(1+\sin(2x))}{\sin^2(x)}

=2limx0(ln(1+sin(2x)))(sin2(x))=2\lim\limits_{x\to 0}\dfrac{(\ln(1+\sin(2x)))'}{(\sin^2(x))'}

=2limx02cos(2x)1+sin(2x)2sin(x)cos(x)=2\lim\limits_{x\to 0}\dfrac{\dfrac{2\cos(2x)}{1+\sin(2x)}}{2\sin(x)\cos(x)}

=2limx0cos(2x)sin(x)cos(x)(1+sin(2x))=2\lim\limits_{x\to 0}\dfrac{\cos(2x)}{\sin(x)\cos(x)(1+\sin(2x))}

limx0ln(1+sin(2x))21cos2(x)=\lim\limits_{x\to 0^-}\dfrac{\ln(1+\sin(2x))^2}{1-\cos^2(x)}=-\infin

limx0+ln(1+sin(2x))21cos2(x)=+\lim\limits_{x\to 0^+}\dfrac{\ln(1+\sin(2x))^2}{1-\cos^2(x)}=+\infin

2)

y2y+y=sinxy''− 2y' + y = \sin x

This is linear nonhomogeneous differential equation.



3)

x2y+xy+a2y=0x^2 y'' + xy'+ a^2 y = 0

Let a=0a=0


x2y+xy=0x^2 y'' + xy'= 0

y=z,y=zy'=z, y''=z'


x2z+xz=0x^2 z'+ xz= 0

dzz=dxx\dfrac{dz}{z}=-\dfrac{dx}{x}

lnz=lnx+lnC1\ln|z|=-\ln|x|+\ln C_1

z=C1xz=\dfrac{C_1}{x}

y=C1xy'=\dfrac{C_1}{x}

y=C1lnx+C2y=C_1\ln x+C_2

Therefore the answer is

explicit algebraic form does not exist.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment