1) Find the following limit: lim (x→0) ln(1 + (sin(2x))^2 )/ (1 − cos2(x)).
2) Determine type of the differential equation y`` − 2y` + y = sin x:
◦ partial differential equation.
◦ first order differential equation.
◦ linear differential equation with constant coefficients.
◦ linear nonhomogeneous differential equation.
◦ nonlinear homogeneous differential equation.
3) Write general solution of the differential equation x^(2) y'' + xy' + a^(2) y = 0:
◦ Ax^2 + Bx
◦ Ax^a + Bx^−a
◦ Ax^ia + Bx^−ia
◦ Ae^ax + Be^−ax
◦ Ae^iax + Be^−iax
◦ explicit algebraic form does not exist.
1)
"\\lim\\limits_{x\\to 0}(2\\ln(1+\\sin(2x))=0"
"\\lim\\limits_{x\\to 0}(\\sin^2(x))=0"
"\\dfrac{0}{0}"
"=2\\lim\\limits_{x\\to 0}\\dfrac{(\\ln(1+\\sin(2x)))'}{(\\sin^2(x))'}"
"=2\\lim\\limits_{x\\to 0}\\dfrac{\\dfrac{2\\cos(2x)}{1+\\sin(2x)}}{2\\sin(x)\\cos(x)}"
"=2\\lim\\limits_{x\\to 0}\\dfrac{\\cos(2x)}{\\sin(x)\\cos(x)(1+\\sin(2x))}"
"\\lim\\limits_{x\\to 0^-}\\dfrac{\\ln(1+\\sin(2x))^2}{1-\\cos^2(x)}=-\\infin"
"\\lim\\limits_{x\\to 0^+}\\dfrac{\\ln(1+\\sin(2x))^2}{1-\\cos^2(x)}=+\\infin"
2)
"y''\u2212 2y' + y = \\sin x"This is linear nonhomogeneous differential equation.
3)
"x^2 y'' + xy'+ a^2 y = 0"Let "a=0"
"y'=z, y''=z'"
"\\dfrac{dz}{z}=-\\dfrac{dx}{x}"
"\\ln|z|=-\\ln|x|+\\ln C_1"
"z=\\dfrac{C_1}{x}"
"y'=\\dfrac{C_1}{x}"
"y=C_1\\ln x+C_2"
Therefore the answer is
explicit algebraic form does not exist.
Comments
Leave a comment