Question #205822

Use appropriate differentiation techniques to determine the first derivatives

  1. y=(3x2xex)/xy=(3√x -2xe^x)/x
  2. y=cos(sin(tanπx))y=cos(√sin(tanπx))
  3. y=(tanx1)/secxy=(tanx-1)/secx
1
Expert's answer
2021-06-13T17:22:39-0400

(1)ddx[3x2xexx]=(3ddx[x]2ddx[xex])x(3x2xex)01x2=2xex+(31122x1212(ddx[x]ex+xddx[ex]))x3xx2=2xex+(32x2(ex+xex))x3xx2=x(32x2(xex+ex))+2xex3xx2Simplify/rewrite:4x52ex+3x2x52(2)ddx[cos(sin(tan(πx)))]=12sin121(tan(πx))ddx[sin(tan(πx))]sin(sin(tan(πx)))=cos(tan(πx))ddx[tan(πx)]sin(sin(tan(πx)))2sin(tan(πx))=cos(tan(πx))sec2(πx)ddx[πx]sin(sin(tan(πx)))2sin(tan(πx))=cos(tan(πx))sec2(πx)1πddx[x]sin(sin(tan(πx)))2sin(tan(πx))=πcos(tan(πx))sec2(πx)1sin(sin(tan(πx)))2sin(tan(πx))=πsec2(πx)cos(tan(πx))sin(sin(tan(πx)))2sin(tan(πx))(3)ddx[tan(x)1sec(x)]=(ddx[tan(x)]+ddx[1])sec(x)(tan(x)1)sec(x)1tan(x)sec2(x)=(sec2(x)+0)sec(x)(tan(x)1)sec(x)tan(x)sec2(x)=sec3(x)sec(x)(tan(x)1)tan(x)sec2(x)Rewrite/simplify:=sec(x)(tan(x)1)tan(x)sec(x)(1)\\ {}{{}{\tfrac{\mathrm{d}}{\mathrm{d}x}\left[\dfrac{3\sqrt{x}-2x\mathrm{e}^x}{x}\right]}}\\ =\dfrac{{}{{}{\left(3\cdot{}{{}{\tfrac{\mathrm{d}}{\mathrm{d}x}\left[\sqrt{x}\right]}}-2\cdot{}{{}{\tfrac{\mathrm{d}}{\mathrm{d}x}\left[x\mathrm{e}^x\right]}}\right)}}x-\left(3\sqrt{x}-2x\mathrm{e}^x\right)\cdot{}{{0}{1}}}{x^2}\\ =\dfrac{2x\mathrm{e}^x+\left(3\cdot{}{{1}{\frac{1}{2}}}{}{{2}{x^{\frac{1}{2}-1}}}-2\left({}{{}{{}{{}{\tfrac{\mathrm{d}}{\mathrm{d}x}\left[x\right]}}\cdot\mathrm{e}^x}}+{}{{}{x\cdot{}{{}{\tfrac{\mathrm{d}}{\mathrm{d}x}\left[\mathrm{e}^x\right]}}}}\right)\right)x-3\sqrt{x}}{x^2}\\ =\dfrac{2x\mathrm{e}^x+\left(\frac{3}{2\sqrt{x}}-2\left({}{{}{}}\mathrm{e}^x+x{}{{}{\mathrm{e}^x}}\right)\right)x-3\sqrt{x}}{x^2}\\ =\dfrac{x\left(\frac{3}{2\sqrt{x}}-2\left(x\mathrm{e}^x+\mathrm{e}^x\right)\right)+2x\mathrm{e}^x-3\sqrt{x}}{x^2}\\ Simplify/rewrite:\\ -\dfrac{4x^\frac{5}{2}\mathrm{e}^x+3x}{2x^\frac{5}{2}}\\ ----------------------\\ (2)\\ {}{{}{\tfrac{\mathrm{d}}{\mathrm{d}x}\left[\cos\left(\sqrt{\sin\left(\tan\left({\pi}x\right)\right)}\right)\right]}}\\ =-{}{{}{\dfrac{1}{2}}}{}{{}{\sin^{\frac{1}{2}-1}\left(\tan\left({\pi}x\right)\right)}}\cdot{}{{}{\tfrac{\mathrm{d}}{\mathrm{d}x}\left[\sin\left(\tan\left({\pi}x\right)\right)\right]}}\cdot\sin\left(\sqrt{\sin\left(\tan\left({\pi}x\right)\right)}\right)\\ =-\dfrac{{}{{}{\cos\left(\tan\left({\pi}x\right)\right)}}\cdot{}{{}{\tfrac{\mathrm{d}}{\mathrm{d}x}\left[\tan\left({\pi}x\right)\right]}}\cdot\sin\left(\sqrt{\sin\left(\tan\left({\pi}x\right)\right)}\right)}{2\sqrt{\sin\left(\tan\left({\pi}x\right)\right)}}\\ =-\dfrac{\cos\left(\tan\left({\pi}x\right)\right){}{{}{\sec^2\left({\pi}x\right)}}\cdot{}{{}{\tfrac{\mathrm{d}}{\mathrm{d}x}\left[{\pi}x\right]}}\cdot\sin\left(\sqrt{\sin\left(\tan\left({\pi}x\right)\right)}\right)}{2\sqrt{\sin\left(\tan\left({\pi}x\right)\right)}}\\ =-\dfrac{\cos\left(\tan\left({\pi}x\right)\right)\sec^2\left({\pi}x\right)\cdot{}{{1}{{\pi}\cdot{}{{}{\tfrac{\mathrm{d}}{\mathrm{d}x}\left[x\right]}}}}\cdot\sin\left(\sqrt{\sin\left(\tan\left({\pi}x\right)\right)}\right)}{2\sqrt{\sin\left(\tan\left({\pi}x\right)\right)}}\\ =-\dfrac{{\pi}\cos\left(\tan\left({\pi}x\right)\right)\sec^2\left({\pi}x\right)\cdot{}{{}{1}}\sin\left(\sqrt{\sin\left(\tan\left({\pi}x\right)\right)}\right)}{2\sqrt{\sin\left(\tan\left({\pi}x\right)\right)}}\\ =-\dfrac{{\pi}\sec^2\left({\pi}x\right)\cos\left(\tan\left({\pi}x\right)\right)\sin\left(\sqrt{\sin\left(\tan\left({\pi}x\right)\right)}\right)}{2\sqrt{\sin\left(\tan\left({\pi}x\right)\right)}}\\ -------------------------\\ (3)\\ {}{{}{\tfrac{\mathrm{d}}{\mathrm{d}x}\left[\dfrac{\tan\left(x\right)-1}{\sec\left(x\right)}\right]}}\\ =\dfrac{{}{{}{\left({}{{}{\tfrac{\mathrm{d}}{\mathrm{d}x}\left[\tan\left(x\right)\right]}}+{}{{}{\tfrac{\mathrm{d}}{\mathrm{d}x}\left[-1\right]}}\right)}}\sec\left(x\right)-\left(\tan\left(x\right)-1\right){}{{}{\sec\left(x\right)}}{}{{1}{\tan\left(x\right)}}}{\sec^2\left(x\right)}\\ =\dfrac{\left({}{{}{\sec^2\left(x\right)}}+{}{{}{0}}\right)\sec\left(x\right)-\left(\tan\left(x\right)-1\right)\sec\left(x\right)\tan\left(x\right)}{\sec^2\left(x\right)}\\ =\dfrac{\sec^3\left(x\right)-\sec\left(x\right)\left(\tan\left(x\right)-1\right)\tan\left(x\right)}{\sec^2\left(x\right)}\\ Rewrite/simplify:\\ =\sec\left(x\right)-\dfrac{\left(\tan\left(x\right)-1\right)\tan\left(x\right)}{\sec\left(x\right)}\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS