(1)dxd[x3x−2xex]=x2(3⋅dxd[x]−2⋅dxd[xex])x−(3x−2xex)⋅01=x22xex+(3⋅1212x21−1−2(dxd[x]⋅ex+x⋅dxd[ex]))x−3x=x22xex+(2x3−2(ex+xex))x−3x=x2x(2x3−2(xex+ex))+2xex−3xSimplify/rewrite:−2x254x25ex+3x−−−−−−−−−−−−−−−−−−−−−−(2)dxd[cos(sin(tan(πx)))]=−21sin21−1(tan(πx))⋅dxd[sin(tan(πx))]⋅sin(sin(tan(πx)))=−2sin(tan(πx))cos(tan(πx))⋅dxd[tan(πx)]⋅sin(sin(tan(πx)))=−2sin(tan(πx))cos(tan(πx))sec2(πx)⋅dxd[πx]⋅sin(sin(tan(πx)))=−2sin(tan(πx))cos(tan(πx))sec2(πx)⋅1π⋅dxd[x]⋅sin(sin(tan(πx)))=−2sin(tan(πx))πcos(tan(πx))sec2(πx)⋅1sin(sin(tan(πx)))=−2sin(tan(πx))πsec2(πx)cos(tan(πx))sin(sin(tan(πx)))−−−−−−−−−−−−−−−−−−−−−−−−−(3)dxd[sec(x)tan(x)−1]=sec2(x)(dxd[tan(x)]+dxd[−1])sec(x)−(tan(x)−1)sec(x)1tan(x)=sec2(x)(sec2(x)+0)sec(x)−(tan(x)−1)sec(x)tan(x)=sec2(x)sec3(x)−sec(x)(tan(x)−1)tan(x)Rewrite/simplify:=sec(x)−sec(x)(tan(x)−1)tan(x)
Comments