3) The mean value theorem for differentiation states that if f(x) is continuous on a closed
interval [a,b] and differentiable on the open interval (a,b), then there exist a number c
in (a,b) such that
f'c=f(b)-f(a)/b-a
If f (x) =5x^2+ 3x 2 , find the value of c in the interval (2,4) that satisfies the above
theorem.
4)The mean value theorem for Differentiation states that if f(x) is differentiable on (a, b)and
continuous on [a, b], then there is at least one point c in (a, b) where f'(c)=f(b)-f(a)/b-a
Find the value of c that satisfies the theorem for the function f(x) = x 6 + in the interval [-2,
10].
"3)f(x)=5x^2+3x^2"
"f(c)=\\frac{f(b)-f(a)}{b-a}" where "a=2,b=4"
"f'(c)= \\frac{f(4)-f(2)}{4-4}=\\frac{f(4)-f(2)}{2}"
"f(4)=5*4^2+3*4^2=128"
"f(2)=5*2^2+3*2^2=32"
"f(c)=c-(5c^2+3c^2)"
"f'(c)= \\frac{d}{dc}(c-5c^2-3c^2)"
"=\\frac{dc}{dc}-\\frac{d5c^2}{dc}-\\frac{d3c^2}{dc}"
"=1-10c-6c"
"1-10c-6c=\\frac{128-32}{2}"
"1-16c=48"
"c=\\frac{48-1}{-16}= \\space -2.9375"
4) "f(x)=x^6"
"f'(c)=\\frac{f(b)-f(a)}{b-a}"
Where "a=-2"
"b=10"
"f'(c)=\\frac{f(10)-f(-2)}{10-2}"
"f(10)=10^6"
"f(-2)=-2^6"
"f'(c)=\\frac{d}{dc}(c-c^6)"
"=\\frac{dc}{dc}- \\frac{dc^6}{dc}"
"=1-6c^5"
"1-6c^5=\\frac{10^{+6}+2^6}{12}"
"c=-6.73810"
Comments
Leave a comment