1) Let x= the side of the square
0<x<16/2The length of the base of the box is (20−2x) cm, the width of the base of the box is (16−2x) cm, and the height of the box is x cm.
i) The volume V of the box will be
V=length×width×height
V=(20−2x)(16−2x)(x)
=320x−40x2−32x2+4x3
=4x3−72x2+320x ii) Find the first derivative of V with respect to x
V′(x)=(4x3−72x2+320x)′=12x2−144x+320 Find the critical number(s)
V′(x)=0=>12x2−144x+320=0
3x2−36x+80=0 D=(−36)2−4(3)(80)=336
x=2(3)36±336=6±3221
x1=6−3221,0<x1<8
x2=6−3221,x2>8
Critical numbers: 6−3221,6+3221.
Since 0<x<8, we consider 6−3221.
If 0<x<6−3221, V′(x)>0,V increases.
If 6−3221<x<8,V′(x)<0,V decreases.
The function A has a local maximum at x=6−3221.
Since the function V has the only extremum on (0,8), then the function V has the absolute maximum on (0,8) at x=6−3221.
The volume of the box is maximum when x=6−3221.
iii) Length of the base of the box
20−2(6−3221)=(8+3421) m≈14.110 m Width of the base of the box
16−2(6−3221)=(4+3421) m≈10.110 m Height of the box
(6−3221) m≈2.945 m
V≈420.011 m3
2) Let 2x= the width of the rectangle
Let y= the height of the rectangle.
Then
Perimeter=2y+x+21(2π(21x))=4 Solve for y
y=2−(42+π)x 1) Area A of the window
A=xy+21π(2x)2
=2x−(42+π)x2+8πx2
=2x−(84+π)x2
ii) Find the first derivative of A with respect to x
A′(x)=(2x−(84+π)x2)′=2−(44+π)x Find the critical number(s)
A′(x)=0=>2−(44+π)x=0
x=4+π8 If 0<x<4+π8,A′(x)>0,A increases.
If 4+π8<x<4,A′(x)<0,A decreases.
The function A has a local maximum at x=4+π8.
Since the function A has the only extremum on (0,4), then the function A has the absolute maximum on (0,4) at x=4+π8.
y=2−(42+π)(4+π8)
=4+π8+2π−4−2π=4+π4 x=4+π8 m≈1.120 m
y=4+π4 m≈0.560 m
(iii)
Amax=2(4+π8)−(84+π)(4+π8)2
=4+π16−8=4+π8(m2)≈1.1202(m2)
Amax=1.1202 m2
Comments