1) Let x = x= x = the side of the square
0 < x < 16 / 2 0<x<16/2 0 < x < 16/2 The length of the base of the box is ( 20 − 2 x ) (20-2x) ( 20 − 2 x ) cm, the width of the base of the box is ( 16 − 2 x ) (16-2x) ( 16 − 2 x ) cm, and the height of the box is x x x cm.
i) The volume V V V of the box will be
V = l e n g t h × w i d t h × h e i g h t V=length\times width \times height V = l e n g t h × w i d t h × h e i g h t
V = ( 20 − 2 x ) ( 16 − 2 x ) ( x ) V=(20-2x)(16-2x)(x) V = ( 20 − 2 x ) ( 16 − 2 x ) ( x )
= 320 x − 40 x 2 − 32 x 2 + 4 x 3 =320x-40x^2-32x^2+4x^3 = 320 x − 40 x 2 − 32 x 2 + 4 x 3
= 4 x 3 − 72 x 2 + 320 x =4x^3-72x^2+320x = 4 x 3 − 72 x 2 + 320 x ii) Find the first derivative of V V V with respect to x x x
V ′ ( x ) = ( 4 x 3 − 72 x 2 + 320 x ) ′ = 12 x 2 − 144 x + 320 V'(x)=(4x^3-72x^2+320x)'=12x^2-144x+320 V ′ ( x ) = ( 4 x 3 − 72 x 2 + 320 x ) ′ = 12 x 2 − 144 x + 320 Find the critical number(s)
V ′ ( x ) = 0 = > 12 x 2 − 144 x + 320 = 0 V'(x)=0=>12x^2-144x+320=0 V ′ ( x ) = 0 => 12 x 2 − 144 x + 320 = 0
3 x 2 − 36 x + 80 = 0 3x^2-36x+80=0 3 x 2 − 36 x + 80 = 0 D = ( − 36 ) 2 − 4 ( 3 ) ( 80 ) = 336 D=(-36)^2-4(3)(80)=336 D = ( − 36 ) 2 − 4 ( 3 ) ( 80 ) = 336
x = 36 ± 336 2 ( 3 ) = 6 ± 2 21 3 x=\dfrac{36\pm\sqrt{336}}{2(3)}=6\pm\dfrac{2\sqrt{21}}{3} x = 2 ( 3 ) 36 ± 336 = 6 ± 3 2 21
x 1 = 6 − 2 21 3 , 0 < x 1 < 8 x_1=6-\dfrac{2\sqrt{21}}{3}, 0<x_1<8 x 1 = 6 − 3 2 21 , 0 < x 1 < 8
x 2 = 6 − 2 21 3 , x 2 > 8 x_2=6-\dfrac{2\sqrt{21}}{3}, x_2>8 x 2 = 6 − 3 2 21 , x 2 > 8
Critical numbers: 6 − 2 21 3 , 6 + 2 21 3 . 6-\dfrac{2\sqrt{21}}{3}, 6+\dfrac{2\sqrt{21}}{3}. 6 − 3 2 21 , 6 + 3 2 21 .
Since 0 < x < 8 , 0<x<8, 0 < x < 8 , we consider 6 − 2 21 3 . 6-\dfrac{2\sqrt{21}}{3}. 6 − 3 2 21 .
If 0 < x < 6 − 2 21 3 , 0<x<6-\dfrac{2\sqrt{21}}{3}, 0 < x < 6 − 3 2 21 , V ′ ( x ) > 0 , V V'(x)>0, V V ′ ( x ) > 0 , V increases.
If 6 − 2 21 3 < x < 8 , V ′ ( x ) < 0 , V 6-\dfrac{2\sqrt{21}}{3}<x<8, V'(x)<0,V 6 − 3 2 21 < x < 8 , V ′ ( x ) < 0 , V decreases.
The function A A A has a local maximum at x = 6 − 2 21 3 . x=6-\dfrac{2\sqrt{21}}{3}. x = 6 − 3 2 21 .
Since the function V V V has the only extremum on ( 0 , 8 ) , (0, 8), ( 0 , 8 ) , then the function V V V has the absolute maximum on ( 0 , 8 ) (0, 8) ( 0 , 8 ) at x = 6 − 2 21 3 . x=6-\dfrac{2\sqrt{21}}{3}. x = 6 − 3 2 21 .
The volume of the box is maximum when x = 6 − 2 21 3 . x=6-\dfrac{2\sqrt{21}}{3}. x = 6 − 3 2 21 .
iii) Length of the base of the box
20 − 2 ( 6 − 2 21 3 ) = ( 8 + 4 21 3 ) m ≈ 14.110 m 20-2(6-\dfrac{2\sqrt{21}}{3})=(8+\dfrac{4\sqrt{21}}{3})\ m\approx14.110\ m 20 − 2 ( 6 − 3 2 21 ) = ( 8 + 3 4 21 ) m ≈ 14.110 m Width of the base of the box
16 − 2 ( 6 − 2 21 3 ) = ( 4 + 4 21 3 ) m ≈ 10.110 m 16-2(6-\dfrac{2\sqrt{21}}{3})=(4+\dfrac{4\sqrt{21}}{3})\ m\approx10.110\ m 16 − 2 ( 6 − 3 2 21 ) = ( 4 + 3 4 21 ) m ≈ 10.110 m Height of the box
( 6 − 2 21 3 ) m ≈ 2.945 m (6-\dfrac{2\sqrt{21}}{3})\ m\approx2.945\ m ( 6 − 3 2 21 ) m ≈ 2.945 m
V ≈ 420.011 m 3 V\approx420.011\ m^3 V ≈ 420.011 m 3
2) Let 2 x = 2x= 2 x = the width of the rectangle
Let y = y= y = the height of the rectangle.
Then
P e r i m e t e r = 2 y + x + 1 2 ( 2 π ( 1 2 x ) ) = 4 Perimeter=2y+x+\dfrac{1}{2}(2\pi (\dfrac{1}{2}x))=4 P er im e t er = 2 y + x + 2 1 ( 2 π ( 2 1 x )) = 4 Solve for y y y
y = 2 − ( 2 + π 4 ) x y=2-(\dfrac{2+\pi}{4})x y = 2 − ( 4 2 + π ) x 1) Area A A A of the window
A = x y + 1 2 π ( x 2 ) 2 A=xy+\dfrac{1}{2}\pi(\dfrac{x}{2})^2 A = x y + 2 1 π ( 2 x ) 2
= 2 x − ( 2 + π 4 ) x 2 + π 8 x 2 =2x-(\dfrac{2+\pi}{4})x^2+\dfrac{\pi}{8}x^2 = 2 x − ( 4 2 + π ) x 2 + 8 π x 2
= 2 x − ( 4 + π 8 ) x 2 =2x-(\dfrac{4+\pi}{8})x^2 = 2 x − ( 8 4 + π ) x 2
ii) Find the first derivative of A A A with respect to x x x
A ′ ( x ) = ( 2 x − ( 4 + π 8 ) x 2 ) ′ = 2 − ( 4 + π 4 ) x A'(x)=(2x-(\dfrac{4+\pi}{8})x^2)'=2-(\dfrac{4+\pi}{4})x A ′ ( x ) = ( 2 x − ( 8 4 + π ) x 2 ) ′ = 2 − ( 4 4 + π ) x Find the critical number(s)
A ′ ( x ) = 0 = > 2 − ( 4 + π 4 ) x = 0 A'(x)=0=>2-(\dfrac{4+\pi}{4})x=0 A ′ ( x ) = 0 => 2 − ( 4 4 + π ) x = 0
x = 8 4 + π x=\dfrac{8}{4+\pi} x = 4 + π 8 If 0 < x < 8 4 + π , A ′ ( x ) > 0 , A 0<x<\dfrac{8}{4+\pi}, A'(x)>0, A 0 < x < 4 + π 8 , A ′ ( x ) > 0 , A increases.
If 8 4 + π < x < 4 , A ′ ( x ) < 0 , A \dfrac{8}{4+\pi}<x<4, A'(x)<0, A 4 + π 8 < x < 4 , A ′ ( x ) < 0 , A decreases.
The function A A A has a local maximum at x = 8 4 + π . x=\dfrac{8}{4+\pi}. x = 4 + π 8 .
Since the function A A A has the only extremum on ( 0 , 4 ) , (0, 4), ( 0 , 4 ) , then the function A A A has the absolute maximum on ( 0 , 4 ) (0, 4) ( 0 , 4 ) at x = 8 4 + π . x=\dfrac{8}{4+\pi}. x = 4 + π 8 .
y = 2 − ( 2 + π 4 ) ( 8 4 + π ) y=2-(\dfrac{2+\pi}{4})(\dfrac{8}{4+\pi}) y = 2 − ( 4 2 + π ) ( 4 + π 8 )
= 8 + 2 π − 4 − 2 π 4 + π = 4 4 + π =\dfrac{8+2\pi-4-2\pi}{4+\pi}=\dfrac{4}{4+\pi} = 4 + π 8 + 2 π − 4 − 2 π = 4 + π 4 x = 8 4 + π m ≈ 1.120 m x=\dfrac{8}{4+\pi}\ m\approx1.120\ m x = 4 + π 8 m ≈ 1.120 m
y = 4 4 + π m ≈ 0.560 m y=\dfrac{4}{4+\pi}\ m\approx0.560\ m y = 4 + π 4 m ≈ 0.560 m
(iii)
A m a x = 2 ( 8 4 + π ) − ( 4 + π 8 ) ( 8 4 + π ) 2 A_{max}=2(\dfrac{8}{4+\pi})-(\dfrac{4+\pi}{8})(\dfrac{8}{4+\pi})^2 A ma x = 2 ( 4 + π 8 ) − ( 8 4 + π ) ( 4 + π 8 ) 2
= 16 − 8 4 + π = 8 4 + π ( m 2 ) ≈ 1.1202 ( m 2 ) =\dfrac{16-8}{4+\pi}=\dfrac{8}{4+\pi}(m^2)\approx1.1202( m^2) = 4 + π 16 − 8 = 4 + π 8 ( m 2 ) ≈ 1.1202 ( m 2 )
A m a x = 1.1202 m 2 A_{max}=1.1202\ m^2 A ma x = 1.1202 m 2
Comments