Question #205437

1) A designer of a box making company wants to produce an open box from a piece of card

with the width of 16cm and the length of 20cm. The box is made by cutting out squares of

length x at each corners.

i)Show that the volume of the box is V=4x^3- 72x^2-320x

ii) Find the value of x so that the volume of the box is maximum.

iii) Find the dimensions of the box so that the volume of the box is maximum.


2) A glass window frame is in the form of a rectangle at the bottom and a semicircle at the

top as shown in Figure 1, has a perimeter of 4 m.

i) Show that the area of the glass window is given by

A = 2x − (4 + π8 )x^2

ii) Find the values of x and y that will maximized the area of the glass window.

(0.56 m)

iii) Hence, find the maximum area of the glass window.




1
Expert's answer
2021-06-12T04:54:23-0400

1) Let x=x= the side of the square


0<x<16/20<x<16/2

The length of the base of the box is (202x)(20-2x) cm, the width of the base of the box is (162x)(16-2x) cm, and the height of the box is xx cm.

i) The volume VV of the box will be


V=length×width×heightV=length\times width \times height

V=(202x)(162x)(x)V=(20-2x)(16-2x)(x)

=320x40x232x2+4x3=320x-40x^2-32x^2+4x^3

=4x372x2+320x=4x^3-72x^2+320x

ii) Find the first derivative of VV with respect to xx


V(x)=(4x372x2+320x)=12x2144x+320V'(x)=(4x^3-72x^2+320x)'=12x^2-144x+320

Find the critical number(s)


V(x)=0=>12x2144x+320=0V'(x)=0=>12x^2-144x+320=0

3x236x+80=03x^2-36x+80=0

D=(36)24(3)(80)=336D=(-36)^2-4(3)(80)=336


x=36±3362(3)=6±2213x=\dfrac{36\pm\sqrt{336}}{2(3)}=6\pm\dfrac{2\sqrt{21}}{3}

x1=62213,0<x1<8x_1=6-\dfrac{2\sqrt{21}}{3}, 0<x_1<8

x2=62213,x2>8x_2=6-\dfrac{2\sqrt{21}}{3}, x_2>8


Critical numbers: 62213,6+2213.6-\dfrac{2\sqrt{21}}{3}, 6+\dfrac{2\sqrt{21}}{3}.

Since 0<x<8,0<x<8, we consider 62213.6-\dfrac{2\sqrt{21}}{3}.


If 0<x<62213,0<x<6-\dfrac{2\sqrt{21}}{3}, V(x)>0,VV'(x)>0, V increases.

If 62213<x<8,V(x)<0,V6-\dfrac{2\sqrt{21}}{3}<x<8, V'(x)<0,V decreases.

The function AA has a local maximum at x=62213.x=6-\dfrac{2\sqrt{21}}{3}.

Since the function VV has the only extremum on (0,8),(0, 8), then the function VV has the absolute maximum on (0,8)(0, 8) at x=62213.x=6-\dfrac{2\sqrt{21}}{3}.

The volume of the box is maximum when x=62213.x=6-\dfrac{2\sqrt{21}}{3}.


iii) Length of the base of the box


202(62213)=(8+4213) m14.110 m20-2(6-\dfrac{2\sqrt{21}}{3})=(8+\dfrac{4\sqrt{21}}{3})\ m\approx14.110\ m

Width of the base of the box


162(62213)=(4+4213) m10.110 m16-2(6-\dfrac{2\sqrt{21}}{3})=(4+\dfrac{4\sqrt{21}}{3})\ m\approx10.110\ m

Height of the box


(62213) m2.945 m(6-\dfrac{2\sqrt{21}}{3})\ m\approx2.945\ m

V420.011 m3V\approx420.011\ m^3

2) Let 2x=2x= the width of the rectangle

Let y=y= the height of the rectangle.




Then

Perimeter=2y+x+12(2π(12x))=4Perimeter=2y+x+\dfrac{1}{2}(2\pi (\dfrac{1}{2}x))=4

Solve for yy


y=2(2+π4)xy=2-(\dfrac{2+\pi}{4})x

1) Area AA of the window


A=xy+12π(x2)2A=xy+\dfrac{1}{2}\pi(\dfrac{x}{2})^2

=2x(2+π4)x2+π8x2=2x-(\dfrac{2+\pi}{4})x^2+\dfrac{\pi}{8}x^2

=2x(4+π8)x2=2x-(\dfrac{4+\pi}{8})x^2

ii) Find the first derivative of AA with respect to xx


A(x)=(2x(4+π8)x2)=2(4+π4)xA'(x)=(2x-(\dfrac{4+\pi}{8})x^2)'=2-(\dfrac{4+\pi}{4})x

Find the critical number(s)


A(x)=0=>2(4+π4)x=0A'(x)=0=>2-(\dfrac{4+\pi}{4})x=0

x=84+πx=\dfrac{8}{4+\pi}

If 0<x<84+π,A(x)>0,A0<x<\dfrac{8}{4+\pi}, A'(x)>0, A increases.


If 84+π<x<4,A(x)<0,A\dfrac{8}{4+\pi}<x<4, A'(x)<0, A decreases.


The function AA has a local maximum at x=84+π.x=\dfrac{8}{4+\pi}.

Since the function AA has the only extremum on (0,4),(0, 4), then the function AA has the absolute maximum on (0,4)(0, 4) at x=84+π.x=\dfrac{8}{4+\pi}.


y=2(2+π4)(84+π)y=2-(\dfrac{2+\pi}{4})(\dfrac{8}{4+\pi})

=8+2π42π4+π=44+π=\dfrac{8+2\pi-4-2\pi}{4+\pi}=\dfrac{4}{4+\pi}

x=84+π m1.120 mx=\dfrac{8}{4+\pi}\ m\approx1.120\ m


y=44+π m0.560 my=\dfrac{4}{4+\pi}\ m\approx0.560\ m


(iii)


Amax=2(84+π)(4+π8)(84+π)2A_{max}=2(\dfrac{8}{4+\pi})-(\dfrac{4+\pi}{8})(\dfrac{8}{4+\pi})^2

=1684+π=84+π(m2)1.1202(m2)=\dfrac{16-8}{4+\pi}=\dfrac{8}{4+\pi}(m^2)\approx1.1202( m^2)



Amax=1.1202 m2A_{max}=1.1202\ m^2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS