Question #205570

Find two level curve of f(x,y)=2xy/(x^2+y^2 ) . Give a rough sketch



1
Expert's answer
2021-06-11T10:10:13-0400
f(x,y)=2xyx2+y2f(x, y)=\dfrac{2xy}{x^2+y^2}

z=2xyx2+y2z=\dfrac{2xy}{x^2+y^2}


c=0:2xyx2+y2=0c=0: \dfrac{2xy}{x^2+y^2}=0


x=0,y0x=0, y\not=0

Or

y=0,x0y=0, x\not=0




c=1:2xyx2+y2=1c=1: \dfrac{2xy}{x^2+y^2}=1

x22xy+y2=0x^2-2xy+y^2=0

(xy)2=0(x-y)^2=0


x=y,x0x=y, x\not=0

Blue graph



c=1:2xyx2+y2=1c=-1: \dfrac{2xy}{x^2+y^2}=-1

x2+2xy+y2=0x^2+2xy+y^2=0

(x+y)2=0(x+y)^2=0


y=x,x0y=-x, x\not=0

Violet graph



c=0.5:2xyx2+y2=0.5c=0.5: \dfrac{2xy}{x^2+y^2}=0.5

y24xy+x2=0y^2-4xy+x^2=0

y=4x±16x24x22y=\dfrac{4x\pm\sqrt{16x^2-4x^2}}{2}y=(23)x or y=(2+3)x,x0y=(2-\sqrt{3})x\ or\ y=(2+\sqrt{3})x, x\not=0

Red graph






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS