Find volume bounded by the planes 𝑥 = 0, 𝑦 = 0, 𝑧 = 0 and 2𝑥 + 𝑦 + 𝑧 = 6 0 ≤ 𝑥 ≤ 2,0 ≤ 𝑦 ≤ 6 − 2�
"=\\displaystyle\\int_{0}^{2}\\displaystyle\\int_{0}^{6-2x}[z]\\begin{matrix}\n 6-y-2x \\\\\n 0\n\\end{matrix}dydx"
"=\\displaystyle\\int_{0}^{2}\\displaystyle\\int_{0}^{6-2x}(6-y-2x)dydx"
"=\\displaystyle\\int_{0}^{2}[6y-\\dfrac{y^2}{2}-2xy]\\begin{matrix}\n 6-2x \\\\\n 0\n\\end{matrix}dx"
"=\\displaystyle\\int_{0}^{2}(36-12x-18+12x-2x^2-12x+4x^2)dx"
"=\\displaystyle\\int_{0}^{2}(2x^2-12x+18)dx"
"=\\dfrac{16}{3}-24+36=\\dfrac{52}{3}(units^3)"
"V=\\dfrac{52}{3}" units of volume.
Comments
Leave a comment