Question #205524

Find volume bounded by the planes 𝑥 = 0, 𝑦 = 0, 𝑧 = 0 and 2𝑥 + 𝑦 + 𝑧 = 6 0 ≤ 𝑥 ≤ 2,0 ≤ 𝑦 ≤ 6 − 2�



1
Expert's answer
2021-06-11T02:59:30-0400
V=02062x06y2xdzdydxV=\displaystyle\int_{0}^{2}\displaystyle\int_{0}^{6-2x}\displaystyle\int_{0}^{6-y-2x}dzdydx

=02062x[z]6y2x0dydx=\displaystyle\int_{0}^{2}\displaystyle\int_{0}^{6-2x}[z]\begin{matrix} 6-y-2x \\ 0 \end{matrix}dydx

=02062x(6y2x)dydx=\displaystyle\int_{0}^{2}\displaystyle\int_{0}^{6-2x}(6-y-2x)dydx

=02[6yy222xy]62x0dx=\displaystyle\int_{0}^{2}[6y-\dfrac{y^2}{2}-2xy]\begin{matrix} 6-2x \\ 0 \end{matrix}dx

=02(3612x18+12x2x212x+4x2)dx=\displaystyle\int_{0}^{2}(36-12x-18+12x-2x^2-12x+4x^2)dx

=02(2x212x+18)dx=\displaystyle\int_{0}^{2}(2x^2-12x+18)dx


=[23x36x2+18x]20=[\dfrac{2}{3}x^3-6x^2+18x]\begin{matrix} 2 \\ 0 \end{matrix}

=16324+36=523(units3)=\dfrac{16}{3}-24+36=\dfrac{52}{3}(units^3)

V=523V=\dfrac{52}{3} units of volume.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS