Answer to Question #205807 in Calculus for abcdefna

Question #205807

Given a sequence an=((n!)2)/(2n)! . Evaluate lim n approaches infinity an

1
Expert's answer
2021-06-14T09:22:27-0400

By ratio test, If limnan+1an=L and L<1 then limnan=0.Here,an=(n!)2(2n)!limnan+1an=limn((n+1)!)2(2n+2)!(n!)2(2n)!=limn((n+1)!)2(2n!)(2n+2)!(n!)2=limn((n+1).n!)2(2n!)(2n+2).(2n+1).(2n)!(n!)2=limn(n+1)2(2n+2).(2n+1)Taking n2 common from numerator and denominator.=limn(1+1n)2(2+2n).(2+1n)=14\text{By ratio test, }\\ If \space lim_{n→∞}\frac{a_{n+1}}{a_n}=L\space and\space L<1 \space then \space lim_{n→∞}a_n=0 .\\ Here, \\ a_n=\frac{(n!)^2}{(2n)!}\\ lim_{n→∞}\frac{a_{n+1}}{a_n}=lim_{n→∞}\frac{\frac{((n+1)!)^2}{(2n+2)!}}{\frac{(n!)^2}{(2n)!}}\\ =lim_{n→∞}\frac{((n+1)!)^2(2n!) }{(2n+2)!(n!)^2}\\ =lim_{n→∞}\frac{((n+1).n!)^2(2n!) }{(2n+2).(2n+1).(2n)!(n!)^2}\\ =lim_{n→∞}\frac{(n+1)^2 }{(2n+2).(2n+1)}\\ \text{Taking }n^2\text{ common from numerator and denominator.}\\ =lim_{n→∞}\frac{(1+\frac{1}{n})^2 }{(2+\frac{2}{n}).(2+\frac{1}{n})}\\ =\frac{1}{4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment