By ratio test, If limn→∞anan+1=L and L<1 then limn→∞an=0.Here,an=(2n)!(n!)2limn→∞anan+1=limn→∞(2n)!(n!)2(2n+2)!((n+1)!)2=limn→∞(2n+2)!(n!)2((n+1)!)2(2n!)=limn→∞(2n+2).(2n+1).(2n)!(n!)2((n+1).n!)2(2n!)=limn→∞(2n+2).(2n+1)(n+1)2Taking n2 common from numerator and denominator.=limn→∞(2+n2).(2+n1)(1+n1)2=41
Comments
Leave a comment