Required Formulae:
(1) dxdsin(x)=cos(x)(2) dxdcos(x)=−sin(x)(3) dxdex=ex
(4) Chain rule of derivative: dvdu=dxdudvdx
Solution:
Take
x=cos(t)⇒dtdx=−sin(t)
Now, take
y=sin(x)⇒dtdy=dtdsin(x)=dxdsin(x).dtdx=−cos(x).sin(t)
Finally,
z=x2+y2+et⇒dtdz=dtd(x2)+dtd(y2)+dtd(et)⇒dtdz=dxd(x2).dtdx+dyd(y2).dtdy+dtd(et)⇒dtdz=2x.dtdx+2y.dtdy+et⇒dtdz=−2x.sin(t)−2y.cos(x).sin(t)+et
Comments
Leave a comment