Given that z= x² + y² + e^t, y=sin(x), x= cos(t). Find dz/dt
Required Formulae:
"(1)\\ \\frac{d}{dx}\\sin (x)=\\cos(x)\\\\\n(2) \\ \\frac{d}{dx}\\cos(x)=-\\sin(x)\\\\\n(3) \\ \\frac{d}{dx}e^x=e^x"
(4) Chain rule of derivative: "\\frac{du}{dv}=\\frac{du}{dx}\\frac{dx}{dv}"
Solution:
Take
"x=\\cos(t)\\\\\n\\Rightarrow \\frac{dx}{dt}=-\\sin(t)"
Now, take
"y=\\sin(x)\\\\\n\\Rightarrow \\frac{dy}{dt}=\\frac{d}{dt}\\sin( x)=\\frac{d}{dx}\\sin (x).\\frac{dx}{dt}=-\\cos(x).\\sin(t)"
Finally,
"z=x^2+y^2+e^t\\\\ \n\\Rightarrow \\frac{dz}{dt}=\\frac{d}{dt}(x^2)+\\frac{d}{dt}(y^2)+\\frac{d}{dt}(e^t)\\\\ \n\\Rightarrow \\frac{dz}{dt}=\\frac{d}{dx}(x^2).\\frac{dx}{dt}+\\frac{d}{dy}(y^2).\\frac{dy}{dt}+\\frac{d}{dt}(e^t)\\\\ \n\\Rightarrow \\frac{dz}{dt}=2x.\\frac{dx}{dt}+2y.\\frac{dy}{dt}+e^t \\\\\n\\Rightarrow \\boxed{\\frac{dz}{dt}=-2x.\\sin(t)-2y.\\cos(x).\\sin(t)+e^t}"
Comments
Leave a comment