Answer to Question #203470 in Calculus for Sourav

Question #203470

Given that z= x² + y² + e^t, y=sin(x), x= cos(t). Find dz/dt


1
Expert's answer
2021-06-07T12:07:36-0400

Required Formulae:

(1) ddxsin(x)=cos(x)(2) ddxcos(x)=sin(x)(3) ddxex=ex(1)\ \frac{d}{dx}\sin (x)=\cos(x)\\ (2) \ \frac{d}{dx}\cos(x)=-\sin(x)\\ (3) \ \frac{d}{dx}e^x=e^x

(4) Chain rule of derivative: dudv=dudxdxdv\frac{du}{dv}=\frac{du}{dx}\frac{dx}{dv}


Solution:

Take

x=cos(t)dxdt=sin(t)x=\cos(t)\\ \Rightarrow \frac{dx}{dt}=-\sin(t)

Now, take

y=sin(x)dydt=ddtsin(x)=ddxsin(x).dxdt=cos(x).sin(t)y=\sin(x)\\ \Rightarrow \frac{dy}{dt}=\frac{d}{dt}\sin( x)=\frac{d}{dx}\sin (x).\frac{dx}{dt}=-\cos(x).\sin(t)

Finally,

z=x2+y2+etdzdt=ddt(x2)+ddt(y2)+ddt(et)dzdt=ddx(x2).dxdt+ddy(y2).dydt+ddt(et)dzdt=2x.dxdt+2y.dydt+etdzdt=2x.sin(t)2y.cos(x).sin(t)+etz=x^2+y^2+e^t\\ \Rightarrow \frac{dz}{dt}=\frac{d}{dt}(x^2)+\frac{d}{dt}(y^2)+\frac{d}{dt}(e^t)\\ \Rightarrow \frac{dz}{dt}=\frac{d}{dx}(x^2).\frac{dx}{dt}+\frac{d}{dy}(y^2).\frac{dy}{dt}+\frac{d}{dt}(e^t)\\ \Rightarrow \frac{dz}{dt}=2x.\frac{dx}{dt}+2y.\frac{dy}{dt}+e^t \\ \Rightarrow \boxed{\frac{dz}{dt}=-2x.\sin(t)-2y.\cos(x).\sin(t)+e^t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment