Given that π(π₯) = 3π₯ 2 β 4π₯ + 7, use the definition of the derivative to find π β² (π₯)
Solution:
"\ud835\udc53(\ud835\udc65) = 3\ud835\udc65^2 \u2212 4\ud835\udc65 + 7"
By definition of derivatives:
"\\begin{aligned}\nf^{\\prime}(x) &=\\lim _{h \\rightarrow 0} \\frac{f(x+h)-f(x)}{h} \\\\\n&=\\lim _{h \\rightarrow 0} \\frac{\\left(3(x+h)^{2}-4(x+h)+7\\right)-\\left(3 x^{2}-4 x-7\\right)}{h} \\\\\n&=\\lim _{h \\rightarrow 0} \\frac{\\left(3\\left(x^{2}+2 x h+h^{2}\\right)-4 x-4 h\\right)-\\left(3 x^{2}-4 x\\right)}{h} \\\\\n&=\\lim _{h \\rightarrow 0} \\frac{3 x^{2}+6 x h+3 h^{2}-4 x-4 h-3 x^{2}+4 x}{h} \\\\\n&=\\lim _{h \\rightarrow 0} \\frac{6 x h+3 h^{2}-4 h}{h} \\\\\n&=\\lim _{h \\rightarrow 0}(6 x+3 h-4) \\\\\n&=6 x-4\n\\end{aligned}"
Comments
Leave a comment