Question #203444

Given that 𝑓(𝑥) = 3𝑥 2 − 4𝑥 + 7, use the definition of the derivative to find 𝑓 ′ (𝑥)


1
Expert's answer
2021-06-07T11:51:10-0400

Solution:

𝑓(𝑥)=3𝑥24𝑥+7𝑓(𝑥) = 3𝑥^2 − 4𝑥 + 7

By definition of derivatives:

f(x)=limh0f(x+h)f(x)h=limh0(3(x+h)24(x+h)+7)(3x24x7)h=limh0(3(x2+2xh+h2)4x4h)(3x24x)h=limh03x2+6xh+3h24x4h3x2+4xh=limh06xh+3h24hh=limh0(6x+3h4)=6x4\begin{aligned} f^{\prime}(x) &=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ &=\lim _{h \rightarrow 0} \frac{\left(3(x+h)^{2}-4(x+h)+7\right)-\left(3 x^{2}-4 x-7\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{\left(3\left(x^{2}+2 x h+h^{2}\right)-4 x-4 h\right)-\left(3 x^{2}-4 x\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h+3 h^{2}-4 x-4 h-3 x^{2}+4 x}{h} \\ &=\lim _{h \rightarrow 0} \frac{6 x h+3 h^{2}-4 h}{h} \\ &=\lim _{h \rightarrow 0}(6 x+3 h-4) \\ &=6 x-4 \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS