Given that 𝑓(𝑥) = 3𝑥 2 − 4𝑥 + 7, use the definition of the derivative to find 𝑓 ′ (𝑥)
Solution:
𝑓(𝑥)=3𝑥2−4𝑥+7𝑓(𝑥) = 3𝑥^2 − 4𝑥 + 7f(x)=3x2−4x+7
By definition of derivatives:
f′(x)=limh→0f(x+h)−f(x)h=limh→0(3(x+h)2−4(x+h)+7)−(3x2−4x−7)h=limh→0(3(x2+2xh+h2)−4x−4h)−(3x2−4x)h=limh→03x2+6xh+3h2−4x−4h−3x2+4xh=limh→06xh+3h2−4hh=limh→0(6x+3h−4)=6x−4\begin{aligned} f^{\prime}(x) &=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ &=\lim _{h \rightarrow 0} \frac{\left(3(x+h)^{2}-4(x+h)+7\right)-\left(3 x^{2}-4 x-7\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{\left(3\left(x^{2}+2 x h+h^{2}\right)-4 x-4 h\right)-\left(3 x^{2}-4 x\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h+3 h^{2}-4 x-4 h-3 x^{2}+4 x}{h} \\ &=\lim _{h \rightarrow 0} \frac{6 x h+3 h^{2}-4 h}{h} \\ &=\lim _{h \rightarrow 0}(6 x+3 h-4) \\ &=6 x-4 \end{aligned}f′(x)=h→0limhf(x+h)−f(x)=h→0limh(3(x+h)2−4(x+h)+7)−(3x2−4x−7)=h→0limh(3(x2+2xh+h2)−4x−4h)−(3x2−4x)=h→0limh3x2+6xh+3h2−4x−4h−3x2+4x=h→0limh6xh+3h2−4h=h→0lim(6x+3h−4)=6x−4
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments