Express the function 𝑓(𝑥) = 𝑥 (𝑥−3)2 as partial fractions and hence find ∫ 𝑓(𝑥)𝑑�
f(x)=x(x−3)2f(x)=\frac{x}{(x-3)^2}f(x)=(x−3)2x
x(x−3)2=x−3+3(x−3)2=1x−3+3(x−3)2\frac{x}{(x-3)^2}=\frac{x-3+3}{(x-3)^2}=\frac{1}{x-3}+\frac{3}{(x-3)^2}(x−3)2x=(x−3)2x−3+3=x−31+(x−3)23
∫(1x−3+3(x−3)2)dx=log(x−3)−3x−3+C\int(\frac{1}{x-3}+\frac{3}{(x-3)^2})dx=log(x-3)-\frac{3}{x-3}+C∫(x−31+(x−3)23)dx=log(x−3)−x−33+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments