Express the function π(π₯) = π₯ (π₯β3)2 as partial fractions and hence find β« π(π₯)ποΏ½
"f(x)=\\frac{x}{(x-3)^2}"
"\\frac{x}{(x-3)^2}=\\frac{x-3+3}{(x-3)^2}=\\frac{1}{x-3}+\\frac{3}{(x-3)^2}"
"\\int(\\frac{1}{x-3}+\\frac{3}{(x-3)^2})dx=log(x-3)-\\frac{3}{x-3}+C"
Comments
Leave a comment