Show that ππ¦ ππ₯ = π ππ2π₯ given that π¦ = tan x
Given that y = tanx
y = sinx/cosx
We know that d/dx(u/v) =
[-u(dv/dx)+v(du/dx)]/v2
y' = [(cosx)(cosx)-(sinx)(-sinx)]/cos2x
y '= [cos2x + sin2x]/cos2x
y '= 1/cos2x = sec2x
Hence proved
Comments
Leave a comment