Answer to Question #203417 in Calculus for Rajay Myrie

Question #203417

Evaluate limπ‘₯β†’2 π‘₯ 3βˆ’2π‘₯ 2+4π‘₯βˆ’8 π‘₯ 4βˆ’2π‘₯ 3+π‘₯βˆ’2


1
Expert's answer
2021-06-08T11:56:20-0400

Let us evaluate the limit:


lim⁑π‘₯β†’2π‘₯3βˆ’2π‘₯2+4π‘₯βˆ’8π‘₯4βˆ’2π‘₯3+π‘₯βˆ’2=lim⁑π‘₯β†’2(xβˆ’2)(π‘₯2+4)(xβˆ’2)(π‘₯3+1)=lim⁑π‘₯β†’2π‘₯2+4π‘₯3+1=22+423+1=89.\lim\limits_{π‘₯\to 2}\frac{ π‘₯^3βˆ’2π‘₯^2+4π‘₯βˆ’8}{ π‘₯^4βˆ’2π‘₯^3+π‘₯βˆ’2}= \lim\limits_{π‘₯\to 2}\frac{ (x-2)(π‘₯^2+4)}{ (x-2)(π‘₯^3+1)}= \lim\limits_{π‘₯\to 2}\frac{ π‘₯^2+4}{π‘₯^3+1}=\frac{ 2^2+4}{2^3+1}=\frac{8}{9}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment