Evaluate limπ₯β2 π₯ 3β2π₯ 2+4π₯β8 π₯ 4β2π₯ 3+π₯β2
Let us evaluate the limit:
limβ‘π₯β2π₯3β2π₯2+4π₯β8π₯4β2π₯3+π₯β2=limβ‘π₯β2(xβ2)(π₯2+4)(xβ2)(π₯3+1)=limβ‘π₯β2π₯2+4π₯3+1=22+423+1=89.\lim\limits_{π₯\to 2}\frac{ π₯^3β2π₯^2+4π₯β8}{ π₯^4β2π₯^3+π₯β2}= \lim\limits_{π₯\to 2}\frac{ (x-2)(π₯^2+4)}{ (x-2)(π₯^3+1)}= \lim\limits_{π₯\to 2}\frac{ π₯^2+4}{π₯^3+1}=\frac{ 2^2+4}{2^3+1}=\frac{8}{9}.xβ2limβx4β2x3+xβ2x3β2x2+4xβ8β=xβ2limβ(xβ2)(x3+1)(xβ2)(x2+4)β=xβ2limβx3+1x2+4β=23+122+4β=98β.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment