Question #203252

Consider the equation xyz = 4x2 +y2 −z2. Use the Implicit Function Theorem to show that the given equation has a smooth unique local solution of the form z = g(x,y) about the point (2,0,4). Then find the local linearization of g about the point (2,0).


1
Expert's answer
2021-06-10T09:46:05-0400

Solution:-

Assuming ss is an open subset of Rn+kR^{n+k} and that F:SRkF:S\to R^k is a function of class C1C^1 .

Assuming that (a,b)(a,b) is a point in that

F(a,b)=0F(a,b)=0 and det DyF(a,b)0D_yF(a,b)\not =0

Consider a continuously differentiable function F(x,y,z)=cF(x,y,z)=c such that

dFdzdF\over dz (x,y,z)0(x,y,z)\not=0 then FF is α(x,y,z)\alpha(x,y,z) in that (x,y)(x,y) is almost close to (x,y)(x,y) then

F(x,y,z)=CF(x,y,z)=C

 xyz=4x2+y2z2xyz=4x^2+y^2-z^2

LetF=4x2+y2z2xyzLet F=4x^2+y^2-z^2-xyz

F=[8xyz,2yxz,2zxy]∇F=[8x−yz,2y−xz,−2z−xy] F(2,0,4)=[8×20×4,2×02×4,2×42×0]∇F(2,0,4)=[8×2−0×4,2×0−2×4,−2×4−2×0]

=[16,8,8]=[16,−8,−8]

Linearization equation

z=zo+Fx(xxy)+Fy(yy1)z=z o​ +F x​ (x−xy)+F_y​ (y−y_1 )

zo(x=2,y=0) thenz=zoz o(x=2,y=0)\space then z=z_o

zo=4×(2)2+02z02z o​ =4×(2) ^2 +0^2 −z_0^2 ​

2o2=1622_o^2 =16^ 2

zo=4z_o=4

z=4+16(x2)8(y0)z=4+16(x−2)−8(y−0)

=4+16x328y,=4+16x−32−8y,

16x8yz28=016x-8y-z-28=0

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS