Answer to Question #203409 in Calculus for Rajay Myrie

Question #203409

Given the system of equations 2 3 2 11 3 2 3 7 4 4 14 x y z x y z x y z + − = − − + = − + = , find the values of x, y, and z using matrix inversion. 


1
Expert's answer
2021-06-07T17:03:14-0400
"2x+3y-2z=11"

"-3x-2y+3z=7"

"4x-4y+z=14"

"A=\\begin{pmatrix}\n 2 & 3 & -2 \\\\\n -3& -2 & 3 \\\\\n 4 & -4 & 1\\\\\n\\end{pmatrix}"


Augment the matrix with the identity matrix:


"\\begin{pmatrix}\n 2 & 3 & -2 & & 1 & 0 & 0 \\\\\n -3 & -2 & 3 & & 0 & 1 & 0 \\\\\n 4 & -4 & 1 & & 0 & 0 & 1\\\\\n\\end{pmatrix}"

"R_1=R_1\/2"


"\\begin{pmatrix}\n 1 & 3\/2 & -1 & & 1\/2 & 0 & 0 \\\\\n -3 & -2 & 3 & & 0 & 1 & 0 \\\\\n 4 & -4 & 1 & & 0 & 0 & 1\\\\\n\\end{pmatrix}"

"R_2=R_2+3R_1"


"\\begin{pmatrix}\n 1 & 3\/2 & -1 & & 1\/2 & 0 & 0 \\\\\n 0 & 5\/2 & 0 & & 3\/2 & 1 & 0 \\\\\n 4 & -4 & 1 & & 0 & 0 & 1\\\\\n\\end{pmatrix}"

"R_3=R_3-4R_1"


"\\begin{pmatrix}\n 1 & 3\/2 & -1 & & 1\/2 & 0 & 0 \\\\\n 0 & 5\/2 & 0 & & 3\/2 & 1 & 0 \\\\\n 0 & -10 & 5 & & -2 & 0 & 1\\\\\n\\end{pmatrix}"

"R_2=(2\/5)R_2"


"\\begin{pmatrix}\n 1 & 3\/2 & -1 & & 1\/2 & 0 & 0 \\\\\n 0 & 1 & 0 & & 3\/5 & 2\/5 & 0 \\\\\n 0 & -10 & 5 & & -2 & 0 & 1\\\\\n\\end{pmatrix}"

"R_1=R_1-(3\/2)R_2"


"\\begin{pmatrix}\n 1 & 0 & -1 & & -2\/5 & -3\/5 & 0 \\\\\n 0 & 1 & 0 & & 3\/5 & 2\/5 & 0 \\\\\n 0 & -10 & 5 & & -2 & 0 & 1\\\\\n\\end{pmatrix}"

"R_3=R_3+10R_2"


"\\begin{pmatrix}\n 1 & 0 & -1 & & -2\/5 & -3\/5 & 0 \\\\\n 0 & 1 & 0 & & 3\/5 & 2\/5 & 0 \\\\\n 0 & 0 & 5 & &4 & 4 & 1\\\\\n\\end{pmatrix}"

"R_3=R_3\/5"


"\\begin{pmatrix}\n 1 & 0 & -1 & & -2\/5 & -3\/5 & 0 \\\\\n 0 & 1 & 0 & & 3\/5 & 2\/5 & 0 \\\\\n 0 & 0 & 1 & & 4\/5 & 4\/5 & 1\/5\\\\\n\\end{pmatrix}"

"R_1=R_1+R_3"


"\\begin{pmatrix}\n 1 & 0 & 0 & & 2\/5 & 1\/5 & 1\/5 \\\\\n 0 & 1 & 0 & & 3\/5 & 2\/5 & 0 \\\\\n 0 & 0 & 1 & & 4\/5 & 4\/5 & 1\/5\\\\\n\\end{pmatrix}"

On the left is the identity matrix. On the right is the inverse matrix.



"A^{-1}=\\begin{pmatrix}\n 2\/5 & 1\/5 & 1\/5 \\\\\n 3\/5 & 2\/5 & 0 \\\\\n 4\/5 & 4\/5 & 1\/5\\\\\n\\end{pmatrix}"


"AX=B=>A^{-1}AX=A^{-1}B=>X=A^{-1}B"

"X=\\begin{pmatrix}\n x\\\\\n y \\\\\n z\\\\\n\\end{pmatrix}, B=\\begin{pmatrix}\n 11\\\\\n 7 \\\\\n 14\\\\\n\\end{pmatrix}"

"A^{-1}B=\\begin{pmatrix}\n 2\/5 & 1\/5 & 1\/5 \\\\\n 3\/5 & 2\/5 & 0 \\\\\n 4\/5 & 4\/5 & 1\/5\\\\\n\\end{pmatrix}\\begin{pmatrix}\n 11\\\\\n 7 \\\\\n 14\\\\\n\\end{pmatrix}"

"=\\begin{pmatrix}\n (22+7+14)\/5\\\\\n (33+14+0)\/5 \\\\\n (44+28+14)\/5\\\\\n\\end{pmatrix}=\\begin{pmatrix}\n 43\/5\\\\\n 47\/5 \\\\\n 86\/5\\\\\n\\end{pmatrix}"

"x=\\dfrac{43}{5}, y=\\dfrac{47}{5}, z=\\dfrac{86}{5}"

"(\\dfrac{43}{5},\\dfrac{47}{5}, \\dfrac{86}{5})"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS