Limx→0 (sin x -x) / tan x
We need to calculate "lim(x\\to0) \\frac {(sinx-x)} {tanx}"
It is in "\\frac 0 0" form after putting in place of "x" .So L Hospital's rule is applicable here .
"= lim(x\\to0)\\frac {\\frac {d} {dx} (sinx-x)} {\\frac {d} {dx}( tanx)}"
"=lim(x\\to0)\\frac {(cosx-1)} {(sec^2x)}"
"=\\frac {(cos0 -1)} {(sec^2(0)}"
"=\\frac {(1-1)} {1^2}" ( As "cos(0)=1, sec(0)=1)"
="\\frac 0 1"
=0 (Ans)
Comments
Leave a comment