∫udv=uv−∫vdu u=(x2+a2)n/2,du=nx(x2+a2)n/2−1dx
dv=dx,v=x
∫(x2+a2)n/2dx=x(x2+a2)n/2−∫x2n(x2+a2)n/2−1dx
=x(x2+a2)n/2−n∫(x2+a2)n/2dx+na2∫(x2+a2)n/2−1dx Then
∫(x2+a2)n/2dx=n+11x(x2+a2)n/2
+n+1na2∫(x2+a2)n/2−1dx,n=−1 n=5
∫(x2+a2)5/2dx=61x(x2+a2)5/2
+65a2∫(x2+a2)3/2dx
∫(x2+a2)3/2dx=41x(x2+a2)1/2
+43a2∫(x2+a2)1/2dx
∫(x2+a2)1/2dx=21x(x2+a2)1/2
+2a2∫(x2+a2)−1/2dx
∫(x2+a2)−1/2dx=ln(∣ax2+a2+∣x∣∣a∣∣)+C1
∫(x2+a2)1/2dx=21x(x2+a2)1/2
+2a2ln(∣ax2+a2+∣x∣∣a∣∣)+C2
Comments
Leave a comment