Answer to Question #202809 in Calculus for Manoj verma

Question #202809

Derive the reduction formula


integeration(x2+a2)n/2dx = x(x2+a2)n/2÷n+1+ na2/n+1×integeration (x+a2)n/2-1dx

Use the formula to integrate integration(x2+a2)5/2

1
Expert's answer
2021-06-06T15:41:28-0400
udv=uvvdu\int udv=uv-\int vdu

u=(x2+a2)n/2,du=nx(x2+a2)n/21dxu=(x^2+a^2)^{n/2}, du=nx(x^2+a^2)^{n/2-1}dx

dv=dx,v=xdv=dx, v=x


(x2+a2)n/2dx=x(x2+a2)n/2x2n(x2+a2)n/21dx\int (x^2+a^2)^{n/2}dx=x(x^2+a^2)^{n/2}-\int x^2n(x^2+a^2)^{n/2-1}dx

=x(x2+a2)n/2n(x2+a2)n/2dx+na2(x2+a2)n/21dx=x(x^2+a^2)^{n/2}-n\int (x^2+a^2)^{n/2}dx+na^2\int (x^2+a^2)^{n/2-1}dx

Then


(x2+a2)n/2dx=1n+1x(x2+a2)n/2\int (x^2+a^2)^{n/2}dx=\dfrac{1}{n+1}x(x^2+a^2)^{n/2}

+na2n+1(x2+a2)n/21dx,n1+\dfrac{na^2}{n+1}\int(x^2+a^2)^{n/2-1}dx, n\not=-1

n=5n=5


(x2+a2)5/2dx=16x(x2+a2)5/2\int (x^2+a^2)^{5/2}dx=\dfrac{1}{6}x(x^2+a^2)^{5/2}

+5a26(x2+a2)3/2dx+\dfrac{5a^2}{6}\int(x^2+a^2)^{3/2}dx

(x2+a2)3/2dx=14x(x2+a2)1/2\int(x^2+a^2)^{3/2}dx=\dfrac{1}{4}x(x^2+a^2)^{1/2}

+3a24(x2+a2)1/2dx+\dfrac{3a^2}{4}\int(x^2+a^2)^{1/2}dx

(x2+a2)1/2dx=12x(x2+a2)1/2\int(x^2+a^2)^{1/2}dx=\dfrac{1}{2}x(x^2+a^2)^{1/2}

+a22(x2+a2)1/2dx+\dfrac{a^2}{2}\int(x^2+a^2)^{-1/2}dx

(x2+a2)1/2dx=ln(ax2+a2+xa)+C1\int(x^2+a^2)^{-1/2}dx=\ln(|a\sqrt{x^2+a^2}+|x||a||)+C_1

(x2+a2)1/2dx=12x(x2+a2)1/2\int(x^2+a^2)^{1/2}dx=\dfrac{1}{2}x(x^2+a^2)^{1/2}

+a22ln(ax2+a2+xa)+C2+\dfrac{a^2}{2}\ln(|a\sqrt{x^2+a^2}+|x||a||)+C_2




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment