Integrate the following functions w.r.t. x:
1. 1/(2x+1)3/2
2. Sin(2x+3)
3. Cosec(4x)
4. 1/(1-9x2)1/2
"\\displaystyle\n1)\\\\ \\int \\frac{1}{(2x+1)^{\\frac{3}{2}}}\\,\\,\\mathrm{d}x = -2(2x+1)^{\\frac{-1}{2}} \\times \\frac{1}{2} + C = -(2x+1)^{\\frac{-1}{2}} + C\\\\\n\n\n2)\\\\ \\int \\sin(2x + 3)\\,\\,\\mathrm{d}x = -\\frac{\\cos(2x + 3)}{2} + C\\\\\n\n3)\\\\\n\\begin{aligned}\n\\int \\cosec(4x)\\,\\mathrm{d}x &=\n\\int \\cosec(4x)\\frac{\\cosec(4x) + \\cot(4x)}{\\cosec(4x) + \\cot(4x)}\\,\\mathrm{d}x \n\\\\&= \\int\\frac{\\cosec^2(4x) + \\cosec(4x)\\cot(4x)}{\\cosec(4x) + \\cot(4x)}\\,\\mathrm{d}x \n\\\\&= -\\int\\frac{\\mathrm{d}\\left(\\cosec(4x) + \\cot(4x)\\right)}{4(\\cosec(4x) + \\cot(4x))}\n\\\\&= -\\frac{1}{4}\\ln\\left|\\cosec(4x) + \\cot(4x)\\right| + C\n\\end{aligned}\n\\\\\n\n4)\\\\ \\begin{aligned}\n\\int \\frac{\\mathrm{d}x}{\\sqrt{1 - 9x^2}} &= \\frac{1}{\\sqrt{9}}\\int \\frac{\\mathrm{d}x}{\\sqrt{\\frac{1}{9} - x^2}} \n\\\\&= \\frac{1}{3}\\int \\frac{\\mathrm{d}x}{\\sqrt{\\frac{1}{9} - x^2}} \n\\\\&= \\frac{1}{3}\\arcsin\\left(\\frac{x}{1\/3}\\right) + C \n\\\\&= \\frac{1}{3}\\arcsin\\left(3x\\right) + C\n\\end{aligned}"
Comments
Leave a comment