1 ) ∫ 1 ( 2 x + 1 ) 3 2 d x = − 2 ( 2 x + 1 ) − 1 2 × 1 2 + C = − ( 2 x + 1 ) − 1 2 + C 2 ) ∫ sin ( 2 x + 3 ) d x = − cos ( 2 x + 3 ) 2 + C 3 ) ∫ cosec ( 4 x ) d x = ∫ cosec ( 4 x ) cosec ( 4 x ) + cot ( 4 x ) cosec ( 4 x ) + cot ( 4 x ) d x = ∫ cosec 2 ( 4 x ) + cosec ( 4 x ) cot ( 4 x ) cosec ( 4 x ) + cot ( 4 x ) d x = − ∫ d ( cosec ( 4 x ) + cot ( 4 x ) ) 4 ( cosec ( 4 x ) + cot ( 4 x ) ) = − 1 4 ln ∣ cosec ( 4 x ) + cot ( 4 x ) ∣ + C 4 ) ∫ d x 1 − 9 x 2 = 1 9 ∫ d x 1 9 − x 2 = 1 3 ∫ d x 1 9 − x 2 = 1 3 arcsin ( x 1 / 3 ) + C = 1 3 arcsin ( 3 x ) + C \displaystyle
1)\\ \int \frac{1}{(2x+1)^{\frac{3}{2}}}\,\,\mathrm{d}x = -2(2x+1)^{\frac{-1}{2}} \times \frac{1}{2} + C = -(2x+1)^{\frac{-1}{2}} + C\\
2)\\ \int \sin(2x + 3)\,\,\mathrm{d}x = -\frac{\cos(2x + 3)}{2} + C\\
3)\\
\begin{aligned}
\int \cosec(4x)\,\mathrm{d}x &=
\int \cosec(4x)\frac{\cosec(4x) + \cot(4x)}{\cosec(4x) + \cot(4x)}\,\mathrm{d}x
\\&= \int\frac{\cosec^2(4x) + \cosec(4x)\cot(4x)}{\cosec(4x) + \cot(4x)}\,\mathrm{d}x
\\&= -\int\frac{\mathrm{d}\left(\cosec(4x) + \cot(4x)\right)}{4(\cosec(4x) + \cot(4x))}
\\&= -\frac{1}{4}\ln\left|\cosec(4x) + \cot(4x)\right| + C
\end{aligned}
\\
4)\\ \begin{aligned}
\int \frac{\mathrm{d}x}{\sqrt{1 - 9x^2}} &= \frac{1}{\sqrt{9}}\int \frac{\mathrm{d}x}{\sqrt{\frac{1}{9} - x^2}}
\\&= \frac{1}{3}\int \frac{\mathrm{d}x}{\sqrt{\frac{1}{9} - x^2}}
\\&= \frac{1}{3}\arcsin\left(\frac{x}{1/3}\right) + C
\\&= \frac{1}{3}\arcsin\left(3x\right) + C
\end{aligned} 1 ) ∫ ( 2 x + 1 ) 2 3 1 d x = − 2 ( 2 x + 1 ) 2 − 1 × 2 1 + C = − ( 2 x + 1 ) 2 − 1 + C 2 ) ∫ sin ( 2 x + 3 ) d x = − 2 cos ( 2 x + 3 ) + C 3 ) ∫ cosec ( 4 x ) d x = ∫ cosec ( 4 x ) cosec ( 4 x ) + cot ( 4 x ) cosec ( 4 x ) + cot ( 4 x ) d x = ∫ cosec ( 4 x ) + cot ( 4 x ) cosec 2 ( 4 x ) + cosec ( 4 x ) cot ( 4 x ) d x = − ∫ 4 ( cosec ( 4 x ) + cot ( 4 x )) d ( cosec ( 4 x ) + cot ( 4 x ) ) = − 4 1 ln ∣ cosec ( 4 x ) + cot ( 4 x ) ∣ + C 4 ) ∫ 1 − 9 x 2 d x = 9 1 ∫ 9 1 − x 2 d x = 3 1 ∫ 9 1 − x 2 d x = 3 1 arcsin ( 1/3 x ) + C = 3 1 arcsin ( 3 x ) + C
Comments