Question #202791

Integrate the following functions w.r.t. x:

1. 1/(2x+1)3/2

2. Sin(2x+3)

3. Cosec(4x)

4. 1/(1-9x2)1/2




1
Expert's answer
2021-06-07T17:22:56-0400

1)1(2x+1)32dx=2(2x+1)12×12+C=(2x+1)12+C2)sin(2x+3)dx=cos(2x+3)2+C3)cosec(4x)dx=cosec(4x)cosec(4x)+cot(4x)cosec(4x)+cot(4x)dx=cosec2(4x)+cosec(4x)cot(4x)cosec(4x)+cot(4x)dx=d(cosec(4x)+cot(4x))4(cosec(4x)+cot(4x))=14lncosec(4x)+cot(4x)+C4)dx19x2=19dx19x2=13dx19x2=13arcsin(x1/3)+C=13arcsin(3x)+C\displaystyle 1)\\ \int \frac{1}{(2x+1)^{\frac{3}{2}}}\,\,\mathrm{d}x = -2(2x+1)^{\frac{-1}{2}} \times \frac{1}{2} + C = -(2x+1)^{\frac{-1}{2}} + C\\ 2)\\ \int \sin(2x + 3)\,\,\mathrm{d}x = -\frac{\cos(2x + 3)}{2} + C\\ 3)\\ \begin{aligned} \int \cosec(4x)\,\mathrm{d}x &= \int \cosec(4x)\frac{\cosec(4x) + \cot(4x)}{\cosec(4x) + \cot(4x)}\,\mathrm{d}x \\&= \int\frac{\cosec^2(4x) + \cosec(4x)\cot(4x)}{\cosec(4x) + \cot(4x)}\,\mathrm{d}x \\&= -\int\frac{\mathrm{d}\left(\cosec(4x) + \cot(4x)\right)}{4(\cosec(4x) + \cot(4x))} \\&= -\frac{1}{4}\ln\left|\cosec(4x) + \cot(4x)\right| + C \end{aligned} \\ 4)\\ \begin{aligned} \int \frac{\mathrm{d}x}{\sqrt{1 - 9x^2}} &= \frac{1}{\sqrt{9}}\int \frac{\mathrm{d}x}{\sqrt{\frac{1}{9} - x^2}} \\&= \frac{1}{3}\int \frac{\mathrm{d}x}{\sqrt{\frac{1}{9} - x^2}} \\&= \frac{1}{3}\arcsin\left(\frac{x}{1/3}\right) + C \\&= \frac{1}{3}\arcsin\left(3x\right) + C \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS