integrate (1-2x)/(45+4x-x^2) dx without using trig substitution
"x^2-4x-45=0"
"x=\\frac{4\\pm \\sqrt{16+180}}{2}"
"x_1=-5,x_2=9"
"x^2-4x-45=(x+5)(x-9)"
"\\frac{1-2x}{45+4x-x^2}=\\frac{2x-1}{(x+5)(x-9)}=\\frac{A}{x+5}+\\frac{B}{x-9}"
"A(x-9)+B(x+5)=2x-1"
"A+B=2"
"5B-9A=-1"
"5(2-A)-9A=-1"
"A=11\/14,B=17\/14"
"\\int\\frac{1-2x}{45+4x-x^2}dx=\\int(\\frac{11}{14(x+5)}+\\frac{17}{14(x-9)})dx=\\\\=\\frac{11}{14}log(x+5)+\\frac{17}{14}log(x-9)+C"
Comments
Leave a comment