Question #202471

integrate (1-2x)/(45+4x-x^2) dx without using trig substitution


1
Expert's answer
2021-06-04T05:07:16-0400

x24x45=0x^2-4x-45=0

x=4±16+1802x=\frac{4\pm \sqrt{16+180}}{2}

x1=5,x2=9x_1=-5,x_2=9

x24x45=(x+5)(x9)x^2-4x-45=(x+5)(x-9)

12x45+4xx2=2x1(x+5)(x9)=Ax+5+Bx9\frac{1-2x}{45+4x-x^2}=\frac{2x-1}{(x+5)(x-9)}=\frac{A}{x+5}+\frac{B}{x-9}

A(x9)+B(x+5)=2x1A(x-9)+B(x+5)=2x-1

A+B=2A+B=2

5B9A=15B-9A=-1

5(2A)9A=15(2-A)-9A=-1

A=11/14,B=17/14A=11/14,B=17/14


12x45+4xx2dx=(1114(x+5)+1714(x9))dx==1114log(x+5)+1714log(x9)+C\int\frac{1-2x}{45+4x-x^2}dx=\int(\frac{11}{14(x+5)}+\frac{17}{14(x-9)})dx=\\=\frac{11}{14}log(x+5)+\frac{17}{14}log(x-9)+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS