integrate (1-2x)/(45+4x-x^2) dx without using trig substitution
x2−4x−45=0x^2-4x-45=0x2−4x−45=0
x=4±16+1802x=\frac{4\pm \sqrt{16+180}}{2}x=24±16+180
x1=−5,x2=9x_1=-5,x_2=9x1=−5,x2=9
x2−4x−45=(x+5)(x−9)x^2-4x-45=(x+5)(x-9)x2−4x−45=(x+5)(x−9)
1−2x45+4x−x2=2x−1(x+5)(x−9)=Ax+5+Bx−9\frac{1-2x}{45+4x-x^2}=\frac{2x-1}{(x+5)(x-9)}=\frac{A}{x+5}+\frac{B}{x-9}45+4x−x21−2x=(x+5)(x−9)2x−1=x+5A+x−9B
A(x−9)+B(x+5)=2x−1A(x-9)+B(x+5)=2x-1A(x−9)+B(x+5)=2x−1
A+B=2A+B=2A+B=2
5B−9A=−15B-9A=-15B−9A=−1
5(2−A)−9A=−15(2-A)-9A=-15(2−A)−9A=−1
A=11/14,B=17/14A=11/14,B=17/14A=11/14,B=17/14
∫1−2x45+4x−x2dx=∫(1114(x+5)+1714(x−9))dx==1114log(x+5)+1714log(x−9)+C\int\frac{1-2x}{45+4x-x^2}dx=\int(\frac{11}{14(x+5)}+\frac{17}{14(x-9)})dx=\\=\frac{11}{14}log(x+5)+\frac{17}{14}log(x-9)+C∫45+4x−x21−2xdx=∫(14(x+5)11+14(x−9)17)dx==1411log(x+5)+1417log(x−9)+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments