Use the inequality 5cos(2x)≤0
5cos(2x)≤0 on [−π,π]
[−π,π] to answer the following questions.
Part A: What are the zeros to the nearest hundredth?
Part B: What is the solution set for the inequality?
Select all correct answers for Part A, and select one answer for Part B. Use π≅3.14
π≅3.14 if needed.
A: x= −1/2π
A: x= −3/4π
A: x= 0π
A: x= −1/4π
A: x= 1/4π
A: x= 3/4π
A: x=−1/2π
B: (−3/4π,−1/4π)∪(1/4π,3/4π)
B: [−1/2π,0π]∪[0π,1/2π]
B: [−1/2π,1/2π]
B: [−3/4π,−1/4π]∪[1/4π,3/4π]
B: (−∞,−3/4π]∪[−1/2π,1/2π]∪[3/4π,∞)
If "x\\in[-\\pi, \\pi]," then "2x\\in[-2\\pi, 2\\pi]"
"x\\in[-\\dfrac{3\\pi}{4}, -\\dfrac{\\pi}{4}]\\cup[\\dfrac{\\pi}{4}, \\dfrac{3\\pi}{4}]"
"5\\cos(2x)= 0"
"=>x_1=-\\dfrac{3\\pi}{4}, x_2=-\\dfrac{\\pi}{4}, x_3=\\dfrac{\\pi}{4}, x_4=\\dfrac{3\\pi}{4}"
A: x= −3/4π
"\\approx-2.36"
A: x= −1/4π
"\\approx-0.79"
A: x= 1/4π
"\\approx-0.79"
A: x= 3/4π
"\\approx2.36"
B: [−3/4π,−1/4π]∪[1/4π,3/4π]
Comments
Leave a comment