Question #202352

Use the inequality 5cos(2x)≤0

5cos⁡⁡(2x)≤0 on [−π,π]

[−π,π] to answer the following questions.

Part A: What are the zeros to the nearest hundredth?

Part B: What is the solution set for the inequality?

Select all correct answers for Part A, and select one answer for Part B. Use π≅3.14

π≅3.14 if needed.


A: x= −1/2π

A: x= −3/4π

A: x= 0π

A: x= −1/4π

A: x= 1/4π

A: x= 3/4π

A: x=−1/2π


B: (−3/4π,−1/4π)∪(1/4π,3/4π)

B: [−1/2π,0π]∪[0π,1/2π]

B: [−1/2π,1/2π]

B: [−3/4π,−1/4π]∪[1/4π,3/4π]

B: (−∞,−3/4π]∪[−1/2π,1/2π]∪[3/4π,∞)


1
Expert's answer
2021-06-12T04:48:30-0400
5cos(2x)0=>cos(2x)05\cos(2x)\leq 0=>\cos(2x)\leq 0

If x[π,π],x\in[-\pi, \pi], then 2x[2π,2π]2x\in[-2\pi, 2\pi]


2x[3π2,π2][π2,3π2]2x\in[-\dfrac{3\pi}{2}, -\dfrac{\pi}{2}]\cup[\dfrac{\pi}{2}, \dfrac{3\pi}{2}]

x[3π4,π4][π4,3π4]x\in[-\dfrac{3\pi}{4}, -\dfrac{\pi}{4}]\cup[\dfrac{\pi}{4}, \dfrac{3\pi}{4}]

5cos(2x)=05\cos(2x)= 0

=>x1=3π4,x2=π4,x3=π4,x4=3π4=>x_1=-\dfrac{3\pi}{4}, x_2=-\dfrac{\pi}{4}, x_3=\dfrac{\pi}{4}, x_4=\dfrac{3\pi}{4}


=>x12.36,x2=0.79,x3=0.79,x4=2.36=>x_1\approx-2.36, x_2=-0.79, x_3=0.79, x_4=2.36


A: x= −3/4π

2.36\approx-2.36


A: x= −1/4π

0.79\approx-0.79


A: x= 1/4π

0.79\approx-0.79


A: x= 3/4π

2.36\approx2.36


B: [−3/4π,−1/4π]∪[1/4π,3/4π]




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS