1.
a.
x sin y + y sin x = 1 x\sin y + y\sin x =1 x sin y + y sin x = 1 Diffirentiate both sides with respect to x x x
sin y + ( x cos y ) y ′ + ( sin x ) y ′ + y cos x = 0 \sin y+(x\cos y)y'+(\sin x)y'+y\cos x=0 sin y + ( x cos y ) y ′ + ( sin x ) y ′ + y cos x = 0
y ′ = − sin y + y cos x sin x + x cos y y'=-\dfrac{\sin y+y\cos x}{\sin x+x\cos y} y ′ = − sin x + x cos y sin y + y cos x b.
tan ( x − y ) = y 1 + x 2 \tan(x-y) =\dfrac{y}{1+x^2} tan ( x − y ) = 1 + x 2 y
( 1 + x 2 ) tan ( x − y ) = y (1+x^2)\tan(x-y)=y ( 1 + x 2 ) tan ( x − y ) = y Diffirentiate both sides with respect to x x x
2 x tan ( x − y ) + ( 1 + x 2 ) ( 1 − y ′ ) cos 2 ( x − y ) = y ′ 2x\tan(x-y)+\dfrac{(1+x^2)(1-y')}{\cos ^2(x-y)}=y' 2 x tan ( x − y ) + cos 2 ( x − y ) ( 1 + x 2 ) ( 1 − y ′ ) = y ′
y ′ = 2 x tan ( x − y ) + 1 + x 2 1 + x 2 + cos 2 ( x − y ) y'=\dfrac{2x\tan(x-y)+1+x^2}{1+x^2+\cos ^2(x-y)} y ′ = 1 + x 2 + cos 2 ( x − y ) 2 x tan ( x − y ) + 1 + x 2
c.
x + y = x 4 + y 4 \sqrt{x+y} = x^4 + y^4 x + y = x 4 + y 4 Diffirentiate both sides with respect to x x x
( 1 + y ′ ) 2 x + y = 4 x 3 + 4 y 3 y ′ \dfrac{(1+y')}{2\sqrt{x+y}}=4x^3+4y^3y' 2 x + y ( 1 + y ′ ) = 4 x 3 + 4 y 3 y ′
y ′ = 8 x 3 x + y − 1 1 − 8 y 3 x + y y'=\dfrac{8x^3\sqrt{x+y}-1}{1-8y^3\sqrt{x+y}} y ′ = 1 − 8 y 3 x + y 8 x 3 x + y − 1
d.
y + x cos y = x 2 y y + x\cos y = x^2 y y + x cos y = x 2 y Diffirentiate both sides with respect to x x x
y ′ + cos y − ( x sin y ) y ′ = 2 x y + x 2 y ′ y'+\cos y-(x\sin y)y'=2xy+x^2 y' y ′ + cos y − ( x sin y ) y ′ = 2 x y + x 2 y ′
y ′ = 2 x y − cos y 1 − x sin y − x 2 y'=\dfrac{2xy-\cos y}{1-x\sin y-x^2} y ′ = 1 − x sin y − x 2 2 x y − cos y
2.
Find the number "c" that satisfy the Mean Value Theorem (M.V.T) on the given intervals:
a. f ( x ) = e − x , [ 0 , 2 ] f(x)=e^{-x}, [0, 2] f ( x ) = e − x , [ 0 , 2 ]
f ′ ( x ) = − e − x f'(x)=-e^{-x} f ′ ( x ) = − e − x
f ′ ( c ) = − e − c , c ∈ ( 0 , 2 ) f'(c)=-e^{-c}, c\in(0, 2) f ′ ( c ) = − e − c , c ∈ ( 0 , 2 )
f ( 0 ) = e − 0 = 1 f(0)=e^{-0}=1 f ( 0 ) = e − 0 = 1
f ( 2 ) = e − 2 f(2)=e^{-2} f ( 2 ) = e − 2 Use the Mean Value Theorem
f ′ ( c ) = f ( 2 ) − f ( 0 ) 2 − 0 f'(c)=\dfrac{f(2)-f(0)}{2-0} f ′ ( c ) = 2 − 0 f ( 2 ) − f ( 0 )
− e − c = e − 2 − 1 2 − 0 -e^{-c}=\dfrac{e^{-2}-1}{2-0} − e − c = 2 − 0 e − 2 − 1
e c = 2 1 − e − 2 e^c=\dfrac{2}{1-e^{-2}} e c = 1 − e − 2 2
c = ln ( 2 1 − e − 2 ) c=\ln(\dfrac{2}{1-e^{-2}}) c = ln ( 1 − e − 2 2 )
b. f ( x ) = x x + 2 , [ 1 , π ] f(x)=\dfrac{x}{x+2}, [1, \pi] f ( x ) = x + 2 x , [ 1 , π ]
f ′ ( x ) = x + 2 − x ( x + 2 ) 2 = 2 ( x + 2 ) 2 f'(x)=\dfrac{x+2-x}{(x+2)^2}=\dfrac{2}{(x+2)^2} f ′ ( x ) = ( x + 2 ) 2 x + 2 − x = ( x + 2 ) 2 2
f ′ ( c ) = 2 ( c + 2 ) 2 , c ∈ ( 1 , π ) f'(c)=\dfrac{2}{(c+2)^2}, c\in(1, \pi) f ′ ( c ) = ( c + 2 ) 2 2 , c ∈ ( 1 , π )
f ( 1 ) = 1 1 + 2 = 1 3 f(1)=\dfrac{1}{1+2}=\dfrac{1}{3} f ( 1 ) = 1 + 2 1 = 3 1
f ( π ) = π π + 2 f(\pi)=\dfrac{\pi}{\pi+2} f ( π ) = π + 2 π Use the Mean Value Theorem
f ′ ( c ) = f ( π ) − f ( 1 ) π − 1 f'(c)=\dfrac{f(\pi)-f(1)}{\pi-1} f ′ ( c ) = π − 1 f ( π ) − f ( 1 )
2 ( c + 2 ) 2 = π π + 2 − 1 3 π − 1 , c ∈ ( 1 , π ) \dfrac{2}{(c+2)^2}=\dfrac{\dfrac{\pi}{\pi+2}-\dfrac{1}{3}}{\pi-1}, c\in(1, \pi) ( c + 2 ) 2 2 = π − 1 π + 2 π − 3 1 , c ∈ ( 1 , π )
2 ( c + 2 ) 2 = 3 π − π − 2 3 ( π − 1 ) ( π + 2 ) \dfrac{2}{(c+2)^2}=\dfrac{3\pi-\pi-2}{3(\pi-1)(\pi+2)} ( c + 2 ) 2 2 = 3 ( π − 1 ) ( π + 2 ) 3 π − π − 2
1 ( c + 2 ) 2 = 1 3 ( π + 2 ) \dfrac{1}{(c+2)^2}=\dfrac{1}{3(\pi+2)} ( c + 2 ) 2 1 = 3 ( π + 2 ) 1
Since c ∈ ( 1 , π ) , c\in (1, \pi), c ∈ ( 1 , π ) , then
c = 3 ( π + 2 ) − 2 c=\sqrt{3(\pi+2)}-2 c = 3 ( π + 2 ) − 2
3.Determine the equation of the tangent and normal at the given points:
a.
y ′ + cos y − ( x sin y ) y ′ = 2 x y + x 2 y ′ y'+\cos y-(x\sin y)y'=2xy+x^2y' y ′ + cos y − ( x sin y ) y ′ = 2 x y + x 2 y ′
y ′ = cos y − 2 x y x sin y + x 2 − 1 y'=\dfrac{\cos y-2xy}{x\sin y+x^2-1} y ′ = x sin y + x 2 − 1 cos y − 2 x y Point ( 1 , π / 2 ) (1, \pi/2) ( 1 , π /2 )
s l o p e 1 = m 1 = cos ( π / 2 ) − 2 ( 1 ) ( π / 2 ) 1 sin ( π / 2 ) + ( 1 ) 2 − 1 = − π slope_1=m_1=\dfrac{\cos (\pi/2)-2(1)(\pi/2)}{1\sin (\pi/2)+(1)^2-1}=-\pi s l o p e 1 = m 1 = 1 sin ( π /2 ) + ( 1 ) 2 − 1 cos ( π /2 ) − 2 ( 1 ) ( π /2 ) = − π The equation of the tangent line in point-slope form
y − π / 2 = − π ( x − 1 ) y-\pi/2=-\pi(x-1) y − π /2 = − π ( x − 1 ) The equation of the tangent line in slope-intercept form
y = − π x + 3 π / 2 y=-\pi x+3\pi/2 y = − π x + 3 π /2
s l o p e 2 = m 2 = − 1 m 1 = 1 π slope_2=m_2=-\dfrac{1}{m_1}=\dfrac{1}{\pi} s l o p e 2 = m 2 = − m 1 1 = π 1 The equation of the normal line in point-slope form
y − π / 2 = 1 π ( x − 1 ) y-\pi/2=\dfrac{1}{\pi}(x-1) y − π /2 = π 1 ( x − 1 ) The equation of the normal line in slope-intercept form
y = 1 π x + π / 2 − 1 π y=\dfrac{1}{\pi} x+\pi/2-\dfrac{1}{\pi} y = π 1 x + π /2 − π 1
b.
h ′ ( x ) = − 2 x ( x 2 + 1 ) 3 / 2 h'(x)=-\dfrac{2x}{(x^2+1)^{3/2}} h ′ ( x ) = − ( x 2 + 1 ) 3/2 2 x x = 1 x=1 x = 1
s l o p e 1 = m 1 = h ′ ( 1 ) = − 2 ( 1 ) ( 1 2 + 1 ) 3 / 2 = − 2 2 slope_1=m_1=h'(1)=-\dfrac{2(1)}{(1^2+1)^{3/2}}=-\dfrac{\sqrt{2}}{2} s l o p e 1 = m 1 = h ′ ( 1 ) = − ( 1 2 + 1 ) 3/2 2 ( 1 ) = − 2 2
h ( 1 ) = 2 1 2 + 1 = 2 h(1)=\dfrac{2}{\sqrt{1^2+1}}=\sqrt{2} h ( 1 ) = 1 2 + 1 2 = 2 The equation of the tangent line in point-slope form
y − 2 = − 2 2 ( x − 1 ) y-\sqrt{2}=-\dfrac{\sqrt{2}}{2}(x-1) y − 2 = − 2 2 ( x − 1 ) The equation of the tangent line in slope-intercept form
y = − 2 2 x + 3 2 2 y=-\dfrac{\sqrt{2}}{2} x+\dfrac{3\sqrt{2}}{2} y = − 2 2 x + 2 3 2
s l o p e 2 = m 2 = − 1 m 1 = 2 slope_2=m_2=-\dfrac{1}{m_1}=\sqrt{2} s l o p e 2 = m 2 = − m 1 1 = 2 The equation of the normal line in point-slope form
y − 2 = 2 ( x − 1 ) y-\sqrt{2}=\sqrt{2}(x-1) y − 2 = 2 ( x − 1 ) The equation of the normal line in slope-intercept form
y = 2 x y=\sqrt{2}x y = 2 x
Comments