Question #202304

1. Use the method of implicit differentiation to determine the derivatives of the following:


a. xsin y + ysin x =1

b. tan(x-y) =y/1+x^2

C. √x+y = x^4 + y^4

d.y + xcos y = x^2 y


2. Find the number "c" that satisfy the Mean Value Theorem (M.V.T) on the given intervals:


a. f(x)= e^-x ; [ 0,2 ]

b. f(x)=x/x+2 ; [ 1, π ]


3.Determine the equation of the tangent and normal at the given points:


a. y + xcos y = x^2 y ; [ 1, π/2 ]

b. h(x) = 2/√x^2 + 1 ; at x=1



1
Expert's answer
2022-01-10T15:41:37-0500

1.

a.


xsiny+ysinx=1x\sin y + y\sin x =1

Diffirentiate both sides with respect to xx


siny+(xcosy)y+(sinx)y+ycosx=0\sin y+(x\cos y)y'+(\sin x)y'+y\cos x=0

y=siny+ycosxsinx+xcosyy'=-\dfrac{\sin y+y\cos x}{\sin x+x\cos y}

b.


tan(xy)=y1+x2\tan(x-y) =\dfrac{y}{1+x^2}

(1+x2)tan(xy)=y(1+x^2)\tan(x-y)=y

Diffirentiate both sides with respect to xx


2xtan(xy)+(1+x2)(1y)cos2(xy)=y2x\tan(x-y)+\dfrac{(1+x^2)(1-y')}{\cos ^2(x-y)}=y'

y=2xtan(xy)+1+x21+x2+cos2(xy)y'=\dfrac{2x\tan(x-y)+1+x^2}{1+x^2+\cos ^2(x-y)}

c.


x+y=x4+y4\sqrt{x+y} = x^4 + y^4

Diffirentiate both sides with respect to xx


(1+y)2x+y=4x3+4y3y\dfrac{(1+y')}{2\sqrt{x+y}}=4x^3+4y^3y'

y=8x3x+y118y3x+yy'=\dfrac{8x^3\sqrt{x+y}-1}{1-8y^3\sqrt{x+y}}

d.


y+xcosy=x2yy + x\cos y = x^2 y

Diffirentiate both sides with respect to xx


y+cosy(xsiny)y=2xy+x2yy'+\cos y-(x\sin y)y'=2xy+x^2 y'

y=2xycosy1xsinyx2y'=\dfrac{2xy-\cos y}{1-x\sin y-x^2}

2.

Find the number "c" that satisfy the Mean Value Theorem (M.V.T) on the given intervals:

a. f(x)=ex,[0,2]f(x)=e^{-x}, [0, 2]


f(x)=exf'(x)=-e^{-x}

f(c)=ec,c(0,2)f'(c)=-e^{-c}, c\in(0, 2)

f(0)=e0=1f(0)=e^{-0}=1

f(2)=e2f(2)=e^{-2}

Use the Mean Value Theorem


f(c)=f(2)f(0)20f'(c)=\dfrac{f(2)-f(0)}{2-0}

ec=e2120-e^{-c}=\dfrac{e^{-2}-1}{2-0}

ec=21e2e^c=\dfrac{2}{1-e^{-2}}

c=ln(21e2)c=\ln(\dfrac{2}{1-e^{-2}})

b. f(x)=xx+2,[1,π]f(x)=\dfrac{x}{x+2}, [1, \pi]

f(x)=x+2x(x+2)2=2(x+2)2f'(x)=\dfrac{x+2-x}{(x+2)^2}=\dfrac{2}{(x+2)^2}

f(c)=2(c+2)2,c(1,π)f'(c)=\dfrac{2}{(c+2)^2}, c\in(1, \pi)

f(1)=11+2=13f(1)=\dfrac{1}{1+2}=\dfrac{1}{3}

f(π)=ππ+2f(\pi)=\dfrac{\pi}{\pi+2}

Use the Mean Value Theorem


f(c)=f(π)f(1)π1f'(c)=\dfrac{f(\pi)-f(1)}{\pi-1}

2(c+2)2=ππ+213π1,c(1,π)\dfrac{2}{(c+2)^2}=\dfrac{\dfrac{\pi}{\pi+2}-\dfrac{1}{3}}{\pi-1}, c\in(1, \pi)

2(c+2)2=3ππ23(π1)(π+2)\dfrac{2}{(c+2)^2}=\dfrac{3\pi-\pi-2}{3(\pi-1)(\pi+2)}

1(c+2)2=13(π+2)\dfrac{1}{(c+2)^2}=\dfrac{1}{3(\pi+2)}


Since c(1,π),c\in (1, \pi), then


c=3(π+2)2c=\sqrt{3(\pi+2)}-2

3.Determine the equation of the tangent and normal at the given points:

a.


y+cosy(xsiny)y=2xy+x2yy'+\cos y-(x\sin y)y'=2xy+x^2y'

y=cosy2xyxsiny+x21y'=\dfrac{\cos y-2xy}{x\sin y+x^2-1}

Point (1,π/2)(1, \pi/2)


slope1=m1=cos(π/2)2(1)(π/2)1sin(π/2)+(1)21=πslope_1=m_1=\dfrac{\cos (\pi/2)-2(1)(\pi/2)}{1\sin (\pi/2)+(1)^2-1}=-\pi

The equation of the tangent line in point-slope form


yπ/2=π(x1)y-\pi/2=-\pi(x-1)

The equation of the tangent line in slope-intercept form


y=πx+3π/2y=-\pi x+3\pi/2

slope2=m2=1m1=1πslope_2=m_2=-\dfrac{1}{m_1}=\dfrac{1}{\pi}

The equation of the normal line in point-slope form


yπ/2=1π(x1)y-\pi/2=\dfrac{1}{\pi}(x-1)

The equation of the normal line in slope-intercept form


y=1πx+π/21πy=\dfrac{1}{\pi} x+\pi/2-\dfrac{1}{\pi}

b.


h(x)=2x(x2+1)3/2h'(x)=-\dfrac{2x}{(x^2+1)^{3/2}}

x=1x=1


slope1=m1=h(1)=2(1)(12+1)3/2=22slope_1=m_1=h'(1)=-\dfrac{2(1)}{(1^2+1)^{3/2}}=-\dfrac{\sqrt{2}}{2}

h(1)=212+1=2h(1)=\dfrac{2}{\sqrt{1^2+1}}=\sqrt{2}

The equation of the tangent line in point-slope form


y2=22(x1)y-\sqrt{2}=-\dfrac{\sqrt{2}}{2}(x-1)

The equation of the tangent line in slope-intercept form


y=22x+322y=-\dfrac{\sqrt{2}}{2} x+\dfrac{3\sqrt{2}}{2}

slope2=m2=1m1=2slope_2=m_2=-\dfrac{1}{m_1}=\sqrt{2}

The equation of the normal line in point-slope form


y2=2(x1)y-\sqrt{2}=\sqrt{2}(x-1)

The equation of the normal line in slope-intercept form


y=2xy=\sqrt{2}x

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS