in triangle ABC, the midpoints of the sides AB, BC and CA respectively. Show that 2AB + 3BC + AC =2LC
To prove this, we construct the diagram below
With the lettering above, we have that
"2\\overrightarrow{AB} + 3\\overrightarrow{BC} + \\overrightarrow{CA}" (1)
Note that
"\\overrightarrow{AB} = 2\\overrightarrow{AL}, \\space\\space \\overrightarrow{BC} = \\overrightarrow{BL} + \\overrightarrow{BC}, \\space\\space\\overrightarrow{CA} = \\overrightarrow{CL} + \\overrightarrow{LA}" (2)
Substituting (2) into (1), we have
"2.2\\overrightarrow{AL} + 3(\\overrightarrow{BL} + \\overrightarrow{LC} ) + \\overrightarrow{CL} + \\overrightarrow{LA}"
This implies
"4\\overrightarrow{AL} + 3\\overrightarrow{BL} + 3\\overrightarrow{LC} + \\overrightarrow{CL} + \\overrightarrow{LA}" (3)
Again,
"\\overrightarrow{BL} = \u2212 \\overrightarrow{AL}, \\overrightarrow{CL} = \u2212 \\overrightarrow{LC} , \\overrightarrow{LA}= \u2212 \\overrightarrow{AL}" (4)
Substituting equation (4) into equation (3), you will obtain that:
"2\\overrightarrow{AB} + 3\\overrightarrow{BC} + \\overrightarrow{CA} = 4\\overrightarrow{AL} \u2212 3\\overrightarrow{AL} + 3\\overrightarrow{LC} \u2212 \\overrightarrow{LC} \u2212 \\overrightarrow{AL}"
Collecting like terms, you obtain that;
"2\\overrightarrow{AB} + 3\\overrightarrow{BC} + \\overrightarrow{CA} = 4\\overrightarrow{AL} \u2212 3\\overrightarrow{AL} \u2212 \\overrightarrow{AL} + 3\\overrightarrow{LC} \u2212 \\overrightarrow{LC} = \\overrightarrow{LC} \u2212\\overrightarrow{LC} = 2\\overrightarrow{LC}"
Comments
Thanks for solving the equations
Leave a comment