Question #201518

e^x

d/dx [ ∫ ( Int dt] = x- In 2

2

True or false with full explanation


1
Expert's answer
2021-06-13T16:10:49-0400

Let us find


ddx[2exlnt dt]=u=lnt,dv=dt,du=dtt,v=t=ddx[tlnt2ex2exdt]=ddx[xex2ln2ex+2]=xex+exex=xexxln2.\frac{d}{dx} [ \int_2^{e^x}\ln t\ dt] =|u=\ln t, dv=dt,du=\frac{dt}{t},v=t|= \frac{d}{dx} [t\ln t|_2^{e^x}- \int_2^{e^x} dt]= \frac{d}{dx} [x{e^x}-2\ln 2- e^x+2]=xe^x+e^x-e^x=xe^x\ne x-\ln 2.


Answer: false


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS