Question #201390

Consider the 3–dimensional vector field F defined by F (x, y,z) = 12x2y2 +2z2 +1, 8x3y −3z, 4xz −3y −3.

(a) Write down the Jacobian matrix JF (x, y,z).

(b) Determine the divergence div F (x, y,z). (c) Determine curl F (x, y,z). (d) Give reasons why F has a potential function.

(e) Find a potential function of F.



1
Expert's answer
2021-06-01T17:36:46-0400

Ans:-

F(x,y,z)=(12x2y2+2z2+1,8x3y3z,4xz3y3)F(x,y,z)=(12x ^2 y^ 2+2z^ 2+1,8x^ 3 y−3z,4xz−3y−3)

or F=\overrightarrow F= (12x2y2+2z2+1)i^+(8x3y3z)j^+(4xz3y3)k^(12x ^2 y^ 2+2z^ 2+1)\hat i+(8x^ 3 y−3z)\hat j+(4xz−3y−3)\hat k


(i)(i) Jacobian Matrix J(F(x,y,z)=[dfxdxdfxdydfxdzdfydxdfydydfydzdfzdxdfzdydfzdz]J(F(x,y,z)=\begin{bmatrix} \dfrac{df_x}{dx} & \dfrac{df_x}{dy}& \dfrac{df_x}{dz} \\\\ \dfrac{df_y}{dx}& \dfrac{df_y}{dy}& \dfrac{df_y}{dz}\\\\ \dfrac{df_z}{dx} & \dfrac{df_z}{dy}& \dfrac{df_z}{dz} \end{bmatrix}




=[24xy224x2y4z24xy28x334z30]\begin{bmatrix} 24xy^2& 24x^2y& 4z \\\\ 24xy^2 & 8x^3& -3\\\\ 4z& -3&0 \end{bmatrix}



(ii)(ii) divF(x,y,z)divF(x,y,z)


=(ddxi^+ddyj^+ddzk^).((12x2y2+2z2+1)i^+(8x3y3z)j^+(4xz3y3)k^)= (\dfrac{d}{dx}\hat{i}+\dfrac{d}{dy}\hat{j}+\dfrac{d}{dz}\hat{k}).((12x^2y^2+2z^2+1)\hat{i}+(8x^3y-3z)\hat{j}+(4xz-3y-3)\hat{k})


=24xy2+8x3+4x=24xy^2+8x^3+4x


(iii)(iii) curlF(x,y,z)=[i^j^k^ddxddyddz12x2y2+2z2+18x3y3z4xz3y3]curl F(x,y,z)=\begin{bmatrix} \hat{i} & \hat{j} &\hat{k}\\\\ \dfrac{d}{dx} &\dfrac{d}{dy}&\dfrac{d}{dz} \\\\ 12x^2y^2+2z^2+1& 8x^3y-3z& 4xz-3y-3 \end{bmatrix}






=i^(3(3))j^(4z4z)+k^(24x2y24x2y)=0=\hat i(−3−(−3))− \hat j(4z−4z)+\hat k(24x^ 2y−24x^ 2y)\\ =0


(iv)(iv)

F is a potential function because, Whenever There exist a field, There exist a potential associated with it. We can calculate the potential function F by the integrating the given vector field.


(v)(v) As we know -

Potential function is given by-

Fv=F.drF _v =−∫F.dr

=((12x2y2+2z2+1)i^+(8x3y3z)j^+(4xz3y3)k^)(dxi^+dyj^+dzz^)=\int ((12x^2y^2+2z^2+1)\hat{i}+(8x^3y-3z)\hat{j}+(4xz-3y-3)\hat{k})(dx\hat{i}+dy\hat{j}+dz\hat{z})


=(4x3y+2z2x+x+4x3y23yz+2x2z3xy3x)=(4x ^3y+2z^ 2x+x+4x^ 3y^ 2 −3yz+2x^ 2z−3xy−3x)


=8x3y2+2x2z+2xz23xy3yz2x=8x ^3y^ 2+2x^ 2z+2xz^ 2−3xy−3yz−2x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS