Consider the 3–dimensional vector field F defined by F (x, y,z) = 12x2y2 +2z2 +1, 8x3y −3z, 4xz −3y −3.
(a) Write down the Jacobian matrix JF (x, y,z).
(b) Determine the divergence div F (x, y,z). (c) Determine curl F (x, y,z). (d) Give reasons why F has a potential function.
(e) Find a potential function of F.
Ans:-
"F(x,y,z)=(12x ^2 y^ 2+2z^ 2+1,8x^ 3 y\u22123z,4xz\u22123y\u22123)"
or "\\overrightarrow F=" "(12x ^2 y^ 2+2z^ 2+1)\\hat i+(8x^ 3 y\u22123z)\\hat j+(4xz\u22123y\u22123)\\hat k"
"(i)" Jacobian Matrix "J(F(x,y,z)=\\begin{bmatrix}\n \\dfrac{df_x}{dx} & \\dfrac{df_x}{dy}& \\dfrac{df_x}{dz} \\\\\\\\\n \\dfrac{df_y}{dx}& \\dfrac{df_y}{dy}& \\dfrac{df_y}{dz}\\\\\\\\\n \\dfrac{df_z}{dx} & \\dfrac{df_z}{dy}& \\dfrac{df_z}{dz}\n\\end{bmatrix}"
="\\begin{bmatrix}\n 24xy^2& 24x^2y& 4z \\\\\\\\\n 24xy^2 & 8x^3& -3\\\\\\\\\n4z& -3&0\n\\end{bmatrix}"
"(ii)" "divF(x,y,z)"
"= (\\dfrac{d}{dx}\\hat{i}+\\dfrac{d}{dy}\\hat{j}+\\dfrac{d}{dz}\\hat{k}).((12x^2y^2+2z^2+1)\\hat{i}+(8x^3y-3z)\\hat{j}+(4xz-3y-3)\\hat{k})"
"=24xy^2+8x^3+4x"
"(iii)" "curl F(x,y,z)=\\begin{bmatrix}\n \\hat{i} & \\hat{j} &\\hat{k}\\\\\\\\\n \\dfrac{d}{dx} &\\dfrac{d}{dy}&\\dfrac{d}{dz} \\\\\\\\\n 12x^2y^2+2z^2+1& 8x^3y-3z& 4xz-3y-3\n\\end{bmatrix}"
"=\\hat i(\u22123\u2212(\u22123))\u2212 \\hat j(4z\u22124z)+\\hat k(24x^ 2y\u221224x^ 2y)\\\\\n=0"
"(iv)"
F is a potential function because, Whenever There exist a field, There exist a potential associated with it. We can calculate the potential function F by the integrating the given vector field.
"(v)" As we know -
Potential function is given by-
"F _v =\u2212\u222bF.dr"
"=\\int ((12x^2y^2+2z^2+1)\\hat{i}+(8x^3y-3z)\\hat{j}+(4xz-3y-3)\\hat{k})(dx\\hat{i}+dy\\hat{j}+dz\\hat{z})"
"=(4x ^3y+2z^ 2x+x+4x^ 3y^ 2 \u22123yz+2x^ 2z\u22123xy\u22123x)"
"=8x ^3y^ 2+2x^ 2z+2xz^ 2\u22123xy\u22123yz\u22122x"
Comments
Leave a comment