Let π = πππ β ππ + π ππ. Evaluate β ππ π½ π½ where V is the region bounded by the surfaces π = π, π = π, π = π, π = π π , π = π
"=\\displaystyle\\int_{0}^{1}\\displaystyle\\int_{0}^{1}\\big[\\dfrac{xz^2}{2}\\vec i-xz\\vec j+y^2z\\vec k\\big]\\begin{matrix}\n 1 \\\\\n x^2\n\\end{matrix}dydx"
"=\\displaystyle\\int_{0}^{1}\\displaystyle\\int_{0}^{1}\\big[\\dfrac{1}{2}(x-x^5)\\vec i-(x-x^3)\\vec j+y^2(1-x^2)\\vec k\\big]\\begin{matrix}\n 1 \\\\\n x^2\n\\end{matrix}dydx"
"=\\displaystyle\\int_{0}^{1}\\displaystyle\\int_{0}^{1}\\bigg(\\dfrac{1}{2}(x-x^5)\\vec i-(x-x^3)\\vec j+y^2(1-x^2)\\vec k\\bigg)dydx"
"=\\displaystyle\\int_{0}^{1}\\bigg[\\big(\\dfrac{1}{2}(x-x^5)y\\vec i-(x-x^3)y\\vec j+\\dfrac{y^3}{3}(1-x^2)\\vec k\\big)\\bigg]\\begin{matrix}\n 1 \\\\\n0\n\\end{matrix}dx"
"=\\displaystyle\\int_{0}^{1}\\bigg(\\big(\\dfrac{1}{2}(x-x^5)\\vec i-(x-x^3)\\vec j+\\dfrac{1}{3}(1-x^2)\\vec k\\big)\\bigg)dx"
"=[(\\dfrac{1}{4}x^2-\\dfrac{1}{12}x^6)\\vec i-(\\dfrac{1}{2}x^2-\\dfrac{1}{4}x^4)\\vec j+(\\dfrac{1}{3}x-\\dfrac{1}{9}x^3))\\vec k]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"
"=\\dfrac{1}{6}\\vec i-\\dfrac{1}{4}\\vec j+\\dfrac{2}{9}\\vec k"
Comments
Leave a comment