Find the area between two curves: y^2 = 2x + 3 ; y = x
"y=x=>y=\\dfrac{1}{2}y^2-\\dfrac{3}{2}"
"y^2-2y-3=0"
"(y+1)(y-3)=0"
"Point (-1,-1), Point(3,3)"
"=\\displaystyle\\int_{-1}^{3}(y-\\dfrac{1}{2}y^2+\\dfrac{3}{2})dy"
"=[\\dfrac{1}{2}y^2-\\dfrac{1}{6}y^3+\\dfrac{3}{2}y]\\begin{matrix}\n 3 \\\\\n -1\n\\end{matrix}"
"=\\dfrac{9}{2}-\\dfrac{27}{6}+\\dfrac{9}{2}-\\dfrac{1}{2}-\\dfrac{1}{6}+\\dfrac{3}{2}"
Area is "\\dfrac{16}{3}" square units.
Comments
Leave a comment