Question #201029

Find the area between two curves: y^2 = 2x + 3 ; y = x


1
Expert's answer
2021-05-31T18:33:14-0400
y2=2x+3=>x=12y232y^2=2x+3=>x=\dfrac{1}{2}y^2-\dfrac{3}{2}

y=x=>y=12y232y=x=>y=\dfrac{1}{2}y^2-\dfrac{3}{2}

y22y3=0y^2-2y-3=0

(y+1)(y3)=0(y+1)(y-3)=0

Point(1,1),Point(3,3)Point (-1,-1), Point(3,3)


Area=13y(12y232)dyArea=\displaystyle\int_{-1}^{3}|y-(\dfrac{1}{2}y^2-\dfrac{3}{2})|dy

=13(y12y2+32)dy=\displaystyle\int_{-1}^{3}(y-\dfrac{1}{2}y^2+\dfrac{3}{2})dy

=[12y216y3+32y]31=[\dfrac{1}{2}y^2-\dfrac{1}{6}y^3+\dfrac{3}{2}y]\begin{matrix} 3 \\ -1 \end{matrix}

=92276+921216+32=\dfrac{9}{2}-\dfrac{27}{6}+\dfrac{9}{2}-\dfrac{1}{2}-\dfrac{1}{6}+\dfrac{3}{2}


=163(units2)=\dfrac{16}{3} (units^2)

Area is 163\dfrac{16}{3} square units.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS