Question #200823

Consider the telescoping series

nn

Sn=ΣSn = Σ [(1/(k+1))(1/k)[ ( 1 / (k+1) ) - ( 1 / k ) ]

k=2k=2



Which of the options below are incorrect?




1) Sn=[(1n)/(2n+2))Sn = [ (1-n) / ( 2n + 2) ) ]



2)

n+1n + 1

SnSn = - Σ[1/k(k1)]Σ [ 1 / k ( k - 1) ]

k=3k = 3


3)

nn

Sn=Σ[1/k(k+1)]Sn = Σ [ 1 / k ( k + 1) ]

k=2k = 2



4)

Sn=Σ[1/k(k+1)]Sn = Σ [ 1 / k ( k + 1) ] = 1/21/2

k=2k = 2


5)

Sn = Σ[1/k(k1)]Σ [ 1 / k ( k - 1) ] =1/2= - 1/2

k=3k = 3



1
Expert's answer
2021-06-08T04:15:59-0400

Given, the telescoping series

Sn=Σk=2n(1k+11k)=(1312)+(1413)+(1514)+•••+(1n+11n)=(1n+112)=1n2n+2Thus, option (1) is correct.Sn=Σk=2n(1k+11k)=Σk=2n1k(k+1)=(12.3+13.4+14.5+16.7+17.8+•••+1n(n+1))=(13.2+14.3+15.4+17.6+18.7+•••+1(n+1).n)=Σk=3n+11k(k1)Thus, option (2) is correct.S_n=Σ_{k=2}^{n}(\frac{1}{k+1}-\frac{1}{k})\\ =(\frac{1}{3}-\frac{1}{2})+(\frac{1}{4}-\frac{1}{3})+(\frac{1}{5}-\frac{1}{4}) +•••+(\frac{1}{n+1}-\frac{1}{n})\\ =(\frac{1}{n+1}-\frac{1}{2})\\ =\frac{1-n}{2n+2}\\ \text{Thus, option (1) is correct.}\\ S_n=Σ_{k=2}^{n}(\frac{1}{k+1}-\frac{1}{k})\\ =Σ_{k=2}^{n}\frac{-1}{k(k+1)}\\ =-(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{7.8} +•••+\frac{1}{n(n+1)})\\ =-(\frac{1}{3.2}+\frac{1}{4.3}+\frac{1}{5.4}+\frac{1}{7.6}+\frac{1}{8.7} +•••+\frac{1}{(n+1).n})\\ =Σ_{k=3}^{n+1}\frac{-1}{k(k-1)}\\ \text{Thus, option (2) is correct.}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS