Consider the telescoping series
"n"
"Sn = \u03a3" "[ ( 1 \/ (k+1) ) - ( 1 \/ k )" ]
"k=2"
Which of the options below are incorrect?
1) "Sn = [ (1-n) \/ ( 2n + 2) )" ]
2)
"n + 1"
"Sn" = - "\u03a3 [ 1 \/ k ( k - 1) ]"
"k = 3"
3)
"n"
"Sn = \ufeff\u03a3 [ 1 \/ k ( k + 1) ]"
"k = 2"
4)
"\u221e"
"Sn = \ufeff\u03a3 [ 1 \/ k ( k + 1) ]" = "1\/2"
"k = 2"
5)
"\u221e"
Sn = "\u03a3 [ 1 \/ k ( k - 1) ]" "= - 1\/2"
"k = 3"
Given, the telescoping series
"S_n=\u03a3_{k=2}^{n}(\\frac{1}{k+1}-\\frac{1}{k})\\\\\n=(\\frac{1}{3}-\\frac{1}{2})+(\\frac{1}{4}-\\frac{1}{3})+(\\frac{1}{5}-\\frac{1}{4})\n+\u2022\u2022\u2022+(\\frac{1}{n+1}-\\frac{1}{n})\\\\\n=(\\frac{1}{n+1}-\\frac{1}{2})\\\\\n=\\frac{1-n}{2n+2}\\\\\n\\text{Thus, option (1) is correct.}\\\\\nS_n=\u03a3_{k=2}^{n}(\\frac{1}{k+1}-\\frac{1}{k})\\\\\n=\u03a3_{k=2}^{n}\\frac{-1}{k(k+1)}\\\\\n=-(\\frac{1}{2.3}+\\frac{1}{3.4}+\\frac{1}{4.5}+\\frac{1}{6.7}+\\frac{1}{7.8}\n+\u2022\u2022\u2022+\\frac{1}{n(n+1)})\\\\\n=-(\\frac{1}{3.2}+\\frac{1}{4.3}+\\frac{1}{5.4}+\\frac{1}{7.6}+\\frac{1}{8.7}\n+\u2022\u2022\u2022+\\frac{1}{(n+1).n})\\\\\n=\u03a3_{k=3}^{n+1}\\frac{-1}{k(k-1)}\\\\\n\\text{Thus, option (2) is correct.}"
Comments
Leave a comment