Consider the telescoping series
nnn
Sn=ΣSn = ΣSn=Σ [(1/(k+1))−(1/k)[ ( 1 / (k+1) ) - ( 1 / k )[(1/(k+1))−(1/k) ]
k=2k=2k=2
Which of the options below are incorrect?
1) Sn=[(1−n)/(2n+2))Sn = [ (1-n) / ( 2n + 2) )Sn=[(1−n)/(2n+2)) ]
2)
n+1n + 1n+1
SnSnSn = - Σ[1/k(k−1)]Σ [ 1 / k ( k - 1) ]Σ[1/k(k−1)]
k=3k = 3k=3
3)
Sn=Σ[1/k(k+1)]Sn = Σ [ 1 / k ( k + 1) ]Sn=Σ[1/k(k+1)]
k=2k = 2k=2
4)
∞∞∞
Sn=Σ[1/k(k+1)]Sn = Σ [ 1 / k ( k + 1) ]Sn=Σ[1/k(k+1)] = 1/21/21/2
5)
Sn = Σ[1/k(k−1)]Σ [ 1 / k ( k - 1) ]Σ[1/k(k−1)] =−1/2= - 1/2=−1/2
Given, the telescoping series
Sn=Σk=2n(1k+1−1k)=(13−12)+(14−13)+(15−14)+•••+(1n+1−1n)=(1n+1−12)=1−n2n+2Thus, option (1) is correct.Sn=Σk=2n(1k+1−1k)=Σk=2n−1k(k+1)=−(12.3+13.4+14.5+16.7+17.8+•••+1n(n+1))=−(13.2+14.3+15.4+17.6+18.7+•••+1(n+1).n)=Σk=3n+1−1k(k−1)Thus, option (2) is correct.S_n=Σ_{k=2}^{n}(\frac{1}{k+1}-\frac{1}{k})\\ =(\frac{1}{3}-\frac{1}{2})+(\frac{1}{4}-\frac{1}{3})+(\frac{1}{5}-\frac{1}{4}) +•••+(\frac{1}{n+1}-\frac{1}{n})\\ =(\frac{1}{n+1}-\frac{1}{2})\\ =\frac{1-n}{2n+2}\\ \text{Thus, option (1) is correct.}\\ S_n=Σ_{k=2}^{n}(\frac{1}{k+1}-\frac{1}{k})\\ =Σ_{k=2}^{n}\frac{-1}{k(k+1)}\\ =-(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{7.8} +•••+\frac{1}{n(n+1)})\\ =-(\frac{1}{3.2}+\frac{1}{4.3}+\frac{1}{5.4}+\frac{1}{7.6}+\frac{1}{8.7} +•••+\frac{1}{(n+1).n})\\ =Σ_{k=3}^{n+1}\frac{-1}{k(k-1)}\\ \text{Thus, option (2) is correct.}Sn=Σk=2n(k+11−k1)=(31−21)+(41−31)+(51−41)+•••+(n+11−n1)=(n+11−21)=2n+21−nThus, option (1) is correct.Sn=Σk=2n(k+11−k1)=Σk=2nk(k+1)−1=−(2.31+3.41+4.51+6.71+7.81+•••+n(n+1)1)=−(3.21+4.31+5.41+7.61+8.71+•••+(n+1).n1)=Σk=3n+1k(k−1)−1Thus, option (2) is correct.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments