Derive a reductions formula for integral emx/xn dx , where m and n are constants.
"I=\\int \\frac{e^{mx}}{x^n}dx\\newline\nPut \\space z=x^{1-n} \\implies dz=\\frac{1-n}{x^n}dx\\newline\nI=-\\frac{1}{1-n}\\int e^{mz^{\\frac{1}{1-n}}} dz \\newline\nPut \\space w=m^{1-n}z \\implies dw=m^{1-n} \\newline\n=\\frac{m^{n-1}}{1-n}\\int e^{w\\frac{1}{1-n}} dw \\newline\n\\text{By using gamma function,}\n\\newline\n=-\\frac{m^{n-1}}{1-n} (1-n)(-1)^{n-1}\\Gamma(1-n, -w^\\frac{1}{1-n})\n\\newline\n=m^{n-1}(-1)^{n}\\Gamma(1-n, -mx)+C"
Comments
Leave a comment