Question #200592

Derive a reductions formula for integral emx/xn dx , where m and n are constants.


1
Expert's answer
2021-05-31T15:18:35-0400

I=emxxndxPut z=x1n    dz=1nxndxI=11nemz11ndzPut w=m1nz    dw=m1n=mn11new11ndwBy using gamma function,=mn11n(1n)(1)n1Γ(1n,w11n)=mn1(1)nΓ(1n,mx)+CI=\int \frac{e^{mx}}{x^n}dx\newline Put \space z=x^{1-n} \implies dz=\frac{1-n}{x^n}dx\newline I=-\frac{1}{1-n}\int e^{mz^{\frac{1}{1-n}}} dz \newline Put \space w=m^{1-n}z \implies dw=m^{1-n} \newline =\frac{m^{n-1}}{1-n}\int e^{w\frac{1}{1-n}} dw \newline \text{By using gamma function,} \newline =-\frac{m^{n-1}}{1-n} (1-n)(-1)^{n-1}\Gamma(1-n, -w^\frac{1}{1-n}) \newline =m^{n-1}(-1)^{n}\Gamma(1-n, -mx)+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS