Question #199770

Use the method of implicit differentiation to determine the derivative of the following functions:

1. xsiny +ysinx=1

2. y + xcosy=x^2 y


1
Expert's answer
2021-05-30T23:45:23-0400

1.

Differentiate both sides with respect to xx


ddx(xsiny+ysinx)=ddx(1)\dfrac{d}{dx}(x\sin y+y\sin x)=\dfrac{d}{dx}(1)

Use the Chain Rule


siny+xcosydydx+sinxdydx+ycosx=0\sin y+x\cos y\cdot\dfrac{dy}{dx}+\sin x\cdot\dfrac{dy}{dx}+y\cos x=0

Solve for dydx\dfrac{dy}{dx}


dydx=siny+ycosxxcosy+sinx\dfrac{dy}{dx}=-\dfrac{\sin y+y\cos x}{x\cos y+\sin x}

2.

Differentiate both sides with respect to xx


ddx(y+xcosy)=ddx(x2y)\dfrac{d}{dx}(y+x\cos y)=\dfrac{d}{dx}(x^2y)

Use the Chain Rule


dydx+cosyxsinydydx=2xy+x2dydx\dfrac{dy}{dx}+\cos y-x\sin y\cdot\dfrac{dy}{dx}=2xy+x^2\cdot\dfrac{dy}{dx}

Solve for dydx\dfrac{dy}{dx}


dydx=cosy2xyx2+xsiny1\dfrac{dy}{dx}=\dfrac{\cos y-2xy}{x^2+x\sin y-1}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS