Question #199582

1. The energy 𝑖, of an inductor with inductance 𝐿 is given by

𝑖= 1/2𝐿∫10 𝑡^2𝑒^−𝑡 𝑑𝑡

For 𝐿=(1 ×10−3)𝐻, Find 𝑖.


1
Expert's answer
2021-05-31T19:33:34-0400

Let us find the energy:


𝑖=12𝐿01𝑡2𝑒𝑡𝑑𝑡=u=t2, dv=etdt, du=2tdt, v=et=12𝐿(t2et01+201tetdt)=12𝐿(e1+201tetdt)=u=t,dv=etdt,du=dt,v=et=12𝐿(e1+2(tet01+01etdt))=et=12𝐿(e1+2(e1et01))=12𝐿(e1+2(e1e1+1))=12𝐿(25e1)𝑖= \frac{1}{2}𝐿\int_0^1 𝑡^2𝑒^−𝑡 𝑑𝑡=|u=t^2,\ dv=e^{-t}dt,\ du=2tdt,\ v=-e^{-t}|= \frac{1}{2}𝐿(-t^2e^{-t}|_0^1+2\int_0^1te^{-t}dt)=\frac{1}{2}𝐿(-e^{-1}+2\int_0^1te^{-t}dt)=|u=t, dv=e^{-t}dt, du=dt, v=-e^{-t}|=\frac{1}{2}𝐿(-e^{-1}+2(-te^{-t}|_0^1+\int_0^1e^{-t}dt))= -e^{-t}|=\frac{1}{2}𝐿(-e^{-1}+2(-e^{-1}-e^{-t}|_0^1))= \frac{1}{2}𝐿(-e^{-1}+2(-e^{-1}-e^{-1}+1))= \frac{1}{2}𝐿(2-5e^{-1})


For 𝐿=(1×103)H𝐿=(1 ×10^{−3})H we have i=12(25e1)103H.i=\frac{1}{2}(2-5e^{-1})10^{-3}H.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS