Question #199582

1. The energy 𝑖, of an inductor with inductance 𝐿 is given by

𝑖= 1/2𝐿∫10 𝑑^2𝑒^βˆ’π‘‘ 𝑑𝑑

For 𝐿=(1 Γ—10βˆ’3)𝐻, Find 𝑖.


1
Expert's answer
2021-05-31T19:33:34-0400

Let us find the energy:


𝑖=12𝐿∫01𝑑2π‘’βˆ’π‘‘π‘‘π‘‘=∣u=t2, dv=eβˆ’tdt, du=2tdt, v=βˆ’eβˆ’t∣=12𝐿(βˆ’t2eβˆ’t∣01+2∫01teβˆ’tdt)=12𝐿(βˆ’eβˆ’1+2∫01teβˆ’tdt)=∣u=t,dv=eβˆ’tdt,du=dt,v=βˆ’eβˆ’t∣=12𝐿(βˆ’eβˆ’1+2(βˆ’teβˆ’t∣01+∫01eβˆ’tdt))=βˆ’eβˆ’t∣=12𝐿(βˆ’eβˆ’1+2(βˆ’eβˆ’1βˆ’eβˆ’t∣01))=12𝐿(βˆ’eβˆ’1+2(βˆ’eβˆ’1βˆ’eβˆ’1+1))=12𝐿(2βˆ’5eβˆ’1)𝑖= \frac{1}{2}𝐿\int_0^1 𝑑^2𝑒^βˆ’π‘‘ 𝑑𝑑=|u=t^2,\ dv=e^{-t}dt,\ du=2tdt,\ v=-e^{-t}|= \frac{1}{2}𝐿(-t^2e^{-t}|_0^1+2\int_0^1te^{-t}dt)=\frac{1}{2}𝐿(-e^{-1}+2\int_0^1te^{-t}dt)=|u=t, dv=e^{-t}dt, du=dt, v=-e^{-t}|=\frac{1}{2}𝐿(-e^{-1}+2(-te^{-t}|_0^1+\int_0^1e^{-t}dt))= -e^{-t}|=\frac{1}{2}𝐿(-e^{-1}+2(-e^{-1}-e^{-t}|_0^1))= \frac{1}{2}𝐿(-e^{-1}+2(-e^{-1}-e^{-1}+1))= \frac{1}{2}𝐿(2-5e^{-1})


For 𝐿=(1Γ—10βˆ’3)H𝐿=(1 Γ—10^{βˆ’3})H we have i=12(2βˆ’5eβˆ’1)10βˆ’3H.i=\frac{1}{2}(2-5e^{-1})10^{-3}H.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS