3. The distance travelled by a train on a straight track in the first two seconds is given by
𝑠= ∫20 20(1−𝑒^−𝑡)𝑑𝑡20
Find the distance travelled in Metres
Take the constant out:∫a⋅f(x)dx=a⋅∫f(x)dx\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dxTaketheconstantout:∫a⋅f(x)dx=a⋅∫f(x)dx
=20⋅∫0−2−1+eudu=20\cdot \int _0^{-2}-1+e^udu=20⋅∫0−2−1+eudu
∫abf(x)dx=−∫baf(x)dx, a<b\int _a^bf\left(x\right)dx=-\int _b^af\left(x\right)dx,\:a<b∫abf(x)dx=−∫baf(x)dx,a<b
=20(−∫−20−1+eudu)=20\left(-\int _{-2}^0-1+e^udu\right)=20(−∫−20−1+eudu)
=20(−(−∫−201du+∫−20eudu))=20\left(-\left(-\int _{-2}^01du+\int _{-2}^0e^udu\right)\right)=20(−(−∫−201du+∫−20eudu))
=20(−(−2+1−1e2))=20\left(-\left(-2+1-\frac{1}{e^2}\right)\right)=20(−(−2+1−e21))
=−20(−1e2−1)=-20\left(-\frac{1}{e^2}-1\right)=−20(−e21−1)
22.7067022.7067022.70670m
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments