Question #199580

3. The distance travelled by a train on a straight track in the first two seconds is given by

𝑠= ∫20 20(1−𝑒^−𝑡)𝑑𝑡20

Find the distance travelled in Metres


1
Expert's answer
2021-05-31T12:23:18-0400

Taketheconstantout:af(x)dx=af(x)dx\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx

=20021+eudu=20\cdot \int _0^{-2}-1+e^udu

abf(x)dx=baf(x)dx,a<b\int _a^bf\left(x\right)dx=-\int _b^af\left(x\right)dx,\:a<b

=20(201+eudu)=20\left(-\int _{-2}^0-1+e^udu\right)

=20((201du+20eudu))=20\left(-\left(-\int _{-2}^01du+\int _{-2}^0e^udu\right)\right)

=20((2+11e2))=20\left(-\left(-2+1-\frac{1}{e^2}\right)\right)

=20(1e21)=-20\left(-\frac{1}{e^2}-1\right)

22.7067022.70670m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS