Solution :
Given, f ( x ) = y = 2 − x 2 f(x)=y=2-x^2 f ( x ) = y = 2 − x 2
Since, it is revolving around y-axis, centroid will lie on y-axis.
So, it is of the form C ( 0 , y , 0 ) C(0,y,0) C ( 0 , y , 0 ) .
y = ∫ 0 b f 2 ( x ) d x 2 ∫ a b f ( x ) d x = ∫ 0 2 ( 2 − x 2 ) 2 d x 2 ∫ 0 2 ( 2 − x 2 ) d x y=\dfrac{\int_0^bf^2(x)dx}{2\int_a^bf(x)dx}
\\=\dfrac{\int_0^{\sqrt{2}}(2-x^2)^2dx}{2\int_0^{\sqrt{2}}(2-x^2)dx} y = 2 ∫ a b f ( x ) d x ∫ 0 b f 2 ( x ) d x = 2 ∫ 0 2 ( 2 − x 2 ) d x ∫ 0 2 ( 2 − x 2 ) 2 d x
= ∫ 0 2 ( 4 + x 4 − 4 x 2 ) d x 2 ∫ 0 2 ( 2 − x 2 ) d x =\dfrac{\int_0^{\sqrt{2}}(4+x^4-4x^2)dx}{2\int_0^{\sqrt{2}}(2-x^2)dx} = 2 ∫ 0 2 ( 2 − x 2 ) d x ∫ 0 2 ( 4 + x 4 − 4 x 2 ) d x
= ( 4 x + x 5 / 5 − 4 x 3 / 3 ) 0 2 2 ( 2 x − x 3 / 3 ) 0 2 =\dfrac{(4x+x^5/5-4x^3/3)_0^{\sqrt{2}}}{2(2x-x^3/3)_0^{\sqrt{2}}} = 2 ( 2 x − x 3 /3 ) 0 2 ( 4 x + x 5 /5 − 4 x 3 /3 ) 0 2
= ( 4 2 + ( 2 ) 5 / 5 − 4 ( 2 ) 3 / 3 ) 2 ( 2 2 − ( 2 ) 3 / 3 ) =\dfrac{(4{\sqrt{2}}+({\sqrt{2}})^5/5-4({\sqrt{2}})^3/3)}{2(2{\sqrt{2}}-({\sqrt{2}})^3/3)} = 2 ( 2 2 − ( 2 ) 3 /3 ) ( 4 2 + ( 2 ) 5 /5 − 4 ( 2 ) 3 /3 )
= ( 4 2 + ( 4 2 ) / 5 − 8 ( 2 ) / 3 ) 2 ( 2 2 − ( 2 2 ) / 3 ) =\dfrac{(4{\sqrt{2}}+(4{\sqrt{2}})/5-8({\sqrt{2}})/3)}{2(2{\sqrt{2}}-(2{\sqrt{2}})/3)} = 2 ( 2 2 − ( 2 2 ) /3 ) ( 4 2 + ( 4 2 ) /5 − 8 ( 2 ) /3 )
= 4 5 =\frac45 = 5 4
Now, C ( 0 , 4 5 , 0 ) C(0,\frac45,0) C ( 0 , 5 4 , 0 )
Comments