Question #199571

1. The energy 𝑖, of an inductor with inductance 𝐿 is given by

𝑖= 12𝐿∫𝑡2𝑒−𝑡10𝑑𝑡


For 𝐿=(1 ×10−3)𝐻, Find 𝑖.


1
Expert's answer
2021-05-31T18:32:29-0400

Ans:-

𝑖=12𝐿01𝑡2𝑒𝑡𝑑t\Rightarrow 𝑖= 12𝐿\intop_0 ^1𝑡^2𝑒^{−𝑡}𝑑t where L=1×103HL=1\times 10^{-3}H


Firstly t2et=t2(et) et(2t)dt\intop t^2e^{-t}= t^2(-e^{-t})-\ \intop-e^{-t}(2t)dt


On Simplification


t2et+2[tet+ etdt]t2et 2tet2et\Rightarrow -t^2e^{-t}+2[-te^{-t}+\ \intop-e^{-t}dt]\\ \Rightarrow -t^2e^{-t}\ -2te^{-t}-2e^{-t}


So put the value of integration in the first expression So that we can find the value of ii


i=12L[t2et2tet2et]01\Rightarrow i=12L[− t^2e^{−t}−2te^{−t}−2e^{−t}]_0 ^1


i=12L(5e1+2)\Rightarrow i=12L(-5e^{-1}+2)


i=1.9272L\Rightarrow i=1.9272L


i=1.92×103A\Rightarrow i =1.92\times 10^{-3} A


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS