Ans:-
⇒i=12L∫01t2e−tdt where L=1×10−3H
Firstly ∫t2e−t=t2(−e−t)− ∫−e−t(2t)dt
On Simplification
⇒−t2e−t+2[−te−t+ ∫−e−tdt]⇒−t2e−t −2te−t−2e−t
So put the value of integration in the first expression So that we can find the value of i
⇒i=12L[−t2e−t−2te−t−2e−t]01
⇒i=12L(−5e−1+2)
⇒i=1.9272L
⇒i=1.92×10−3A
Comments