1. The energy π, of an inductor with inductance πΏ is given by
π= 12πΏβ«π‘2πβπ‘10ππ‘
For πΏ=(1 Γ10β3)π», Find π.
Ans:-
"\\Rightarrow \ud835\udc56= 12\ud835\udc3f\\intop_0 ^1\ud835\udc61^2\ud835\udc52^{\u2212\ud835\udc61}\ud835\udc51t" where "L=1\\times 10^{-3}H"
Firstly "\\intop t^2e^{-t}= t^2(-e^{-t})-\\ \\intop-e^{-t}(2t)dt"
On Simplification
"\\Rightarrow -t^2e^{-t}+2[-te^{-t}+\\ \\intop-e^{-t}dt]\\\\\n\\Rightarrow -t^2e^{-t}\\ -2te^{-t}-2e^{-t}"
So put the value of integration in the first expression So that we can find the value of "i"
"\\Rightarrow i=12L[\u2212\nt^2e^{\u2212t}\u22122te^{\u2212t}\u22122e^{\u2212t}]_0\n ^1"
"\\Rightarrow i=12L(-5e^{-1}+2)"
"\\Rightarrow i=1.9272L"
"\\Rightarrow i =1.92\\times 10^{-3} A"
Comments
Leave a comment