Question #199247

lim (3x^2+4/ 5x^4+ 7x^2+1)

x→∞


1
Expert's answer
2021-05-31T07:49:25-0400

We have given the limit


limx3x2+45x4+7x2+1limx\rightarrow \infty \dfrac{3x^2+4}{5x^4+ 7x^2+1}


limxx2(3+4x2)x4(5+7x2+1x4)limx\rightarrow \infty \dfrac{x^2(3+\dfrac{4}{x^2})}{x^4(5+\dfrac{7}{x^2}+\dfrac{1}{x^4})}


limx(3+4x2)(5+7x2+1x4)limx\rightarrow \infty \dfrac{(3+\dfrac{4}{x^2})}{(5+\dfrac{7}{x^2}+\dfrac{1}{x^4})}


After putting the limit we get 0.


Hence, limx3x2+45x4+7x2+1=0limx\rightarrow \infty \dfrac{3x^2+4}{5x^4+ 7x^2+1} = 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS