lim (3x^2+4/ 5x^4+ 7x^2+1)
x→∞
We have given the limit
limx→∞3x2+45x4+7x2+1limx\rightarrow \infty \dfrac{3x^2+4}{5x^4+ 7x^2+1}limx→∞5x4+7x2+13x2+4
limx→∞x2(3+4x2)x4(5+7x2+1x4)limx\rightarrow \infty \dfrac{x^2(3+\dfrac{4}{x^2})}{x^4(5+\dfrac{7}{x^2}+\dfrac{1}{x^4})}limx→∞x4(5+x27+x41)x2(3+x24)
limx→∞(3+4x2)(5+7x2+1x4)limx\rightarrow \infty \dfrac{(3+\dfrac{4}{x^2})}{(5+\dfrac{7}{x^2}+\dfrac{1}{x^4})}limx→∞(5+x27+x41)(3+x24)
After putting the limit we get 0.
Hence, limx→∞3x2+45x4+7x2+1=0limx\rightarrow \infty \dfrac{3x^2+4}{5x^4+ 7x^2+1} = 0limx→∞5x4+7x2+13x2+4=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments