Question #199718

Consider the series:


ΣΣ [ (x2+9)(x^2 + 9) / 25 ]a]^a

a=1a = 1


The values of yy of which this series converges form an internal (k,k)(-k, k) .

Give the value for kk


1
Expert's answer
2021-06-02T16:35:48-0400

It is given that,

a=1[(x2+9)25]a=a=1[Ma]\displaystyle\sum_{a=1}^\infin\lbrack\frac{(x^2+9)}{25}\rbrack^a=\displaystyle\sum_{a=1}^\infin\lbrack M_a\rbrack


    Ma=[(x2+9)25]a\implies M_a=\lbrack\frac{(x^2+9)}{25}\rbrack^a


By the ratio test,

L=limaMa+1MaL=\lim_{a\rightarrow \infty} \vert\frac{M_{a+1}}{M_a}\vert

L=lima[(x2+9)25]a+1[(x2+9)25]aL=\lim_{a\rightarrow \infty }\vert\frac{\lbrack\frac{ (x^2+9)}{25}\rbrack ^{a+1}}{\lbrack \frac{(x^2+9)}{25}\rbrack^a}\vert


L=lima [(x2+9)25]L=lim_{ a\rightarrow \infty}\space \vert\lbrack\frac{(x^2+9)}{25}\rbrack\vert


L=[(x2+9)25]L=\vert \lbrack\frac{(x^2+9)}{25}\rbrack\vert


For interval of convergence,

L<1

(x2+9)25<1\vert\frac{(x^2+9)}{25}\vert<1


x2+925<1\frac{x^2+9}{25}<1


x2+9<25x2+925<0x216<0(x4)(x+4)<04<x<4x^2+9<25\\x^2+9-25<0\\x^2-16<0\\(x-4)(x+4)<0\\-4<x<4


Hence the interval of convergence is x(4,4)x\in(-4,4)


and k=4k=4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS