Answer to Question #199734 in Calculus for Moe

Question #199734

which of the expressions below are equal to


3485616+7832...3•4•8 - 5•6•16 + 7•8•32 - ...


when summed to the kk terms?


1)

kk+1+ 1

ΣΣ a(a+1)(1)a(a+1)(-1) a+1 2a2^a

a=a = 33



2)

kk

ΣΣ (2a+1)(2a+2)2(2a + 1) (2a + 2) 2 a + 2

a=a = 11



3)

kk+1+ 1

ΣΣ 4(1)aa(2a1)2a4(-1)^a a(2a-1)2^a

a=a = 22



4)


kk

ΣΣ (1)aa(a+1)(a+5)(-1)^a a(a+1)(a+5)

a=a = 33

 




5) none of the above


1
Expert's answer
2021-06-07T19:27:39-0400

Given, the expression

3•4•8−5•6•16+7•8•32−... (upto k times).

1)

Σa=3k+1a(a+1)(1)a+12a=3.4.84.5.16+5.6.32...(upto k +1 terms)Σ_{a=3}^{k+1} a(a+1)(-1)^{a+1}2^a\\ =3.4.8-4.5.16+5.6.32-...(\text{upto k +1 terms})

2)

Σa=1k(2a+1)(2a+2)2a+2=3.4.8+5.6.16+7.8.32+...(upto k terms)Σ_{a=1}^{k} (2a+1)(2a+2)2^{a+2}\\ =3.4.8+5.6.16+7.8.32+...(\text{upto k terms})

3)

Σa=2k+14(1)aa(2a1)2a=4.2.3.44.3.5.8+4.4.7.16+...(upto k +1 terms)Σ_{a=2}^{k+1}4(-1)^a a(2a-1)2^{a}\\ =4.2.3.4-4.3.5.8+4.4.7.16+...(\text{upto k +1 terms})

4)

Σa=3k(1)aa(a+1)(a+5)=3.4.8+4.5.95.6.10+...(upto k terms)Since, none of the above series matched woth the given series. Therefore, correct option is (5) none of these.Σ_{a=3}^{k}(-1)^a a(a+1)(a+5)\\ =-3.4.8+4.5.9-5.6.10+...(\text{upto k terms})\\ \text{Since, none of the above series matched woth the given series.}\\\text{ Therefore, correct option is (5) none of these.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment